We present an apparatus that applies Ramsey's method of separated oscillatory fields to proton spins in water molecules. The setup consists of a water circuit, a spin polarizer, a magnetically shielded interaction region with various radio frequency elements, and a nuclear magnetic resonance system to measure the spin polarization. We show that this apparatus can be used for Rabi resonance measurements and to investigate magnetic and pseudomagnetic field effects in Ramsey-type precision measurements with a sensitivity below 100 pT.
View Article and Find Full Text PDFWe report on a search for dark matter axionlike particles (ALPs) using a Ramsey-type apparatus for cold neutrons. A hypothetical ALP-gluon coupling would manifest in a neutron electric dipole moment signal oscillating in time. Twenty-four hours of data have been analyzed in a frequency range from 23 μHz to 1 kHz, and no significant oscillating signal has been found.
View Article and Find Full Text PDFWe have recently shown how a polarized beam in Talbot-Lau interferometric imaging can be used to analyze strong magnetic fields through the spin dependent differential phase effect at field gradients. While in that case an adiabatic spin coupling with the sample field is required, here we investigate a nonadiabatic coupling causing a spatial splitting of the neutron spin states with respect to the external magnetic field. This subsequently leads to no phase contrast signal but a loss of interferometer visibility referred to as dark-field contrast.
View Article and Find Full Text PDFThe intrinsic magnetic moment of a neutron, combined with its charge neutrality, is a unique property which allows the investigation of magnetic phenomena in matter. Here we present how the utilization of a cold polarized neutron beam in neutron grating interferometry enables the visualization and characterization of magnetic properties on a microscopic scale in macroscopic samples. The measured signal originates from the phase shift induced by the magnetic potential.
View Article and Find Full Text PDFA 10 MeV/c positive muon beam was stopped in helium gas of a few mbar in a magnetic field of 5 T. The muon "swarm" has been efficiently compressed from a length of 16 cm down to a few mm along the magnetic field axis (longitudinal compression) using electrostatic fields. The simulation reproduces the low energy interactions of slow muons in helium gas.
View Article and Find Full Text PDFWe report on a neutron particle physics experiment, which provides for the first time an upper limit on the strength of an axial coupling constant for a new light spin 1 boson in the millimeter range. Such a new boson would mediate a new force between ordinary fermions, like neutrons and protons. The experiment was set up at the cold neutron reflectometer Narziss at the Paul Scherrer Institute and uses Ramsey's technique of separated oscillating fields to search for a pseudomagnetic neutron spin precession induced by this new interaction.
View Article and Find Full Text PDFPhys Rev Lett
September 2011
Ultracold neutrons (UCNs) play an important role for precise measurements of the properties of the neutron and its interactions. During the past 25 years, a neutron turbine coupled to a liquid deuterium cold neutron source at a high-flux reactor has defined the state of the art for UCN production, despite a long history of efforts towards a new generation of UCN sources. This Letter reports a world-best UCN density available for users, achieved with a new source based on conversion of cold neutrons in superfluid helium.
View Article and Find Full Text PDF