Publications by authors named "Florian J Stadler"

This review offers an illuminating journey through the historical evolution and modern-day applications of liquid metals, presenting a comprehensive view of their significance in diverse fields. Tracing the trajectory from mercury applications to contemporary innovations, the paper explores their pivotal role in industry and research. The analysis spans electrical switches, mechanical applications, electrodes, chemical synthesis, energy storage, thermal transport, electronics, and biomedicine.

View Article and Find Full Text PDF

Nano zero-valent (nZVI) based composite have been widely utilized in environmental remediation. However, the rapid agglomeration and quick deactivation of nZVI limited its application on large scale. In this work, CaCO supported nZVI-Ni catalyst, namely nZVI-Ni@CaCO was prepared and used for the efficient removal of trichloroethylene (TCE) in PS oxidation process.

View Article and Find Full Text PDF

Healable electronic skins, an essential component for future soft robotics, implantable bioelectronics, and smart wearable systems, necessitate self-healable and pliable materials that exhibit functionality at intricate interfaces. Although a plethora of self-healable materials have been developed, the fabrication of highly conformal biocompatible functional materials on complex biological surfaces remains a formidable challenge. Inspired by regenerative properties of skin, we present the self-assembled transfer-printable liquid metal epidermis (SALME), which possesses autonomous self-healing capabilities at the oil-water interface.

View Article and Find Full Text PDF

Pectin-crosslinked gum ghatti hydrogel (PGH) has been synthesized utilizing pectin and gum ghatti through an uncomplicated and inexpensive copolymerization method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM-elemental mapping), Brunauer-Emmett-Teller (BET), and X-ray photoelectron spectroscopy (XPS) characterization techniques have been employed to determine various structural, chemical and compositional characteristics of fabricated PGH. Three different weight ratios (1:1, 2:1, or 1:2 for pectin and gum ghatti, respectively) were employed to synthesize three distinct types of PGH.

View Article and Find Full Text PDF

There is a high demand for an optimal drug delivery system to treat androgenetic alopecia. Topical application of ISX9, which is a neurogenesis inducer, has been found to stimulate hair follicle (HF) regrowth by upregulating the Wnt/β-catenin signaling pathway, an essential pathway involved in initiating HF growth and development. In the present study, a temperature-sensitive, biopolymer-based, biocompatible, and eco-friendly drug-delivery system was synthesized.

View Article and Find Full Text PDF

The present paper describes the design of shape-oriented hydrogel nanospheres using a facile ultrasonication-supported crosslinked copolymerization technique. The effect of variable monomer concentration on the homogeneity of hydrogel nanospheres was investigated. The chitosan--poly(MMA) hydrogel nanospheres were well characterized using various techniques such as FTIR, XRD, TGA, SEM, and TEM.

View Article and Find Full Text PDF

The dramatic rise in carbon dioxide levels in the atmosphere caused by the continuous use of carbon fuels continues to have a significant impact on environmental degradation and the disappearance of energy reserves. Past few years have seen a significant increase in the interest in photocatalytic carbon dioxide reduction because of its ability to lower CO releases from the burning of fossil fuels while also producing fuels and important chemical products. Because of their excellent catalytic efficiency, great uniformity, lengthy charge diffusion layers and texture flexibility that enable accurate band gap and band line optimization, perovskite-based nanomaterials are perhaps the most advantageous among the numerous semiconductors proficient in accelerating CO conversion under visible light.

View Article and Find Full Text PDF

This study investigates the rheological properties of dual-network hydrogels based on acrylamide and sodium alginate under large deformations. The concentration of calcium ions affects the nonlinear behavior, and all gel samples exhibit strain hardening, shear thickening, and shear densification. The paper focuses on systematic variation of the alginate concentration-which serves as second network building blocks-and the Ca-concentration-which shows how strongly they are connected.

View Article and Find Full Text PDF

Pickering emulgels stabilized by graphene oxide (GO) with didodecyldimethylammonium bromide (DDAB) as an auxiliary surfactant and liquid paraffin as the oil phase have proved to be an excellent 3D printable ink. This paper elucidates the structure of such emulgels by a combination of microscopy before and after intensive shear as well as broadband dielectric spectroscopy and rheology in the linear and nonlinear regime. An increase of the DDAB surfactant and GO-contents leads to a systematic increase of modulus and viscosity, a reduction of the limits of the nonlinear regime and a more complicated variation of the normal forces, with negative normal forces at high shear rate for low GO-contents and positive normal forces at high GO-contents.

View Article and Find Full Text PDF

Ionic liquids (ILs)-incorporated solid-state polymer electrolytes (iono-SPEs) have high ionic conductivities but show non-uniform Li transport in different phases. This work greatly promotes Li transport in polymer phases by employing a poly (vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) [P(VDF-TrFE-CTFE), PTC] as the framework of ILs to prepare iono-SPEs. Unlike PVDF, PTC with suitable polarity shows weaker adsorption energy on IL cations, reducing their possibility of occupying Li -hopping sites.

View Article and Find Full Text PDF

Hybrid hydrogels based on n-isopropylacrylamide, zwitterionic comonomer, and graphene oxide were synthesized to study their physical and mechanical properties. The compositional variation largely influenced the swelling characteristics of the hybrid hydrogels compared to mechanical properties, i.e.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how flexible polymer chains at the interface of cellulose nanofiber (CNF)-based Pickering emulsions affect their rheological and dielectric properties, using liquid paraffin and didodecyldimethylammonium bromide (DDAB) as components.
  • Results show that varying the amounts of CNF and DDAB alters droplet size and dispersion, leading to changes in viscosity and yield points, with CNF promoting a network formation and DDAB assisting in solubilizing CNF.
  • Polarized optical microscopy and fluorescence analysis reveal distinct behaviors of droplets based on CNF and DDAB content, while broadband dielectric spectroscopy further clarifies the relationship between composition, morphology, and physical interactions within the emulsion system
View Article and Find Full Text PDF

Biopolymer-based conductive hydrogels (HGs) are promising candidates for preparing environmentally friendly flexible electronics. However, it is still a great challenge to synthesize biopolymer-based tough, self-healable, and fast strain recoverable HGs. Herein, a facile strategy is demonstrated to synthesize stretchable, self-recoverable, conductive, and tough HGs strain sensors through the formation of multi-dynamic interactions (i.

View Article and Find Full Text PDF

After several billions of years, nature still makes decisions on its own to identify, develop, and direct the most effective material for phenomena/challenges faced. Likewise, and inspired by the nature, we learned how to take steps in developing new technologies and materials innovations. Wet and strong adhesion by mussels (among which -blue mussel and -California mussel are the most well-known species) has been an inspiration in developing advanced adhesives for the moist condition.

View Article and Find Full Text PDF

In this Special Issue, several papers dedicated to biomedical, environmental, and biological applications have been assembled, representing different aspects of the field [...

View Article and Find Full Text PDF

In the present study, we have successfully formulated a dual heterojunction of g-CN/BiOCl@MXene-TiC (GCBM) which was found to be highly active in the visible region. GCBM was found to be highly efficient for the degradation of an antibiotic, tetracycline (TC) as compared to the individual constituting units; g-CN and BiOCl. Maximum of 97% TC degradation rate was obtained within 90 min of visible light irradiation for initial concentration of 10 mg/L of TC.

View Article and Find Full Text PDF

Herein, we report the designing of a CN/BiOI heterostructure that is supported on gum acacia-crosslinked-poly(acrylamide) hydrogel to fabricate a novel nanocomposite hydrogel. The potential application of the obtained nanocomposite hydrogel to remediate crystal violet dye (CVD) in an aqueous solution was explored. The structural and functional analysis of the nanocomposite hydrogel was performed by FTIR (Fourier transform infrared spectroscopy), X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM).

View Article and Find Full Text PDF

New developments require innovative ecofriendly materials defined by their biocompatibility, biodegradability, and versatility. For that reason, the scientific society is focused on biopolymers such as chitosan, which is the second most abundant in the world after cellulose. These new materials should show good properties in terms of sustainability, circularity, and energy consumption during industrial applications.

View Article and Find Full Text PDF

The present research demonstrates the facile fabrication of xanthan gum-cl-poly(acrylamide-co-alginic acid) (XG-cl-poly(AAm-co-AA)) hydrogel by employing microwave-assisted copolymerization. Simultaneous copolymerization of acrylamide (AAm) and alginic acid (AA) onto xanthan gum (XG) was carried out. Different samples were fabricated by changing the concentrations of AAm and AA.

View Article and Find Full Text PDF

Rapid industrial development is associated with high discharge of toxic pollutants into the environment. The industries discharge their wastewater containing organic pollutants directly into the water system without treating them that has posed many serious threats to environmental protection. The use of bioadsorbents for the removal of such toxic pollutants from the waste water due to its simple synthesis, easy operation, effectiveness, and economic viability have emerged a new dimension in the wastewater treatment approaches.

View Article and Find Full Text PDF

New emerging technologies, remarkably miniaturized 3D organ models and microfluidics, enable simulation of the real in vitro microenvironment ex vivo more closely. There are many fascinating features of innovative organ-on-a-chip (OOC) technology, including the possibility of integrating semipermeable and/or stretchable membranes, creating continuous perfusion of fluids into microchannels and chambers (while maintaining laminar flow regime), embedding microdevices like microsensors, microstimulators, micro heaters, or different cell lines, along with other 3D cell culture technologies. OOC systems are designed to imitate the structure and function of human organs, ranging from breathing lungs to beating hearts.

View Article and Find Full Text PDF

The functionalization of smart polymers is opening a new perspective in catalysis, drug carriers and biosensors, due to the fact that they can modulate the response regarding conventional devices. This smart response could be affected by the presence of organometallic complexes in terms of interactions which could affect the physical chemical properties. In this sense, the thermoresponsive behavior of copolymers based on -isopropylacrylamide (NIPAM) could be affected due to the presence of hydrophobic groups and concentration effect.

View Article and Find Full Text PDF

Designing and fabrication of smart hybrid multifunctional materials for energy/fuel production and environmental detoxification is indeed of great significance for sustainable development. Herein, we synthesized a new well-structured S-scheme heterostructure Fe@TiO/Boron Carbon nitride (FT/BCN) with high performance tetracycline degradation and selective CO photo-reduction to CH. Under visible light irradiation, 96.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionc9s3rqtuhh77qcdt2nogeiuapgd46anp): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once