Publications by authors named "Florian Hirsch"

Resonance-stabilized radicals are considered as possible intermediates in the formation of polycyclic aromatic hydrocarbons (PAHs) in interstellar space. Here, we investigate the fulvenallenyl radical, the most stable CH isomer by IR/UV ion dip spectroscopy employing free electron laser radiation in the mid-infrared region between 550 and 1750 cm. The radical is generated by pyrolysis from phthalide.

View Article and Find Full Text PDF

The resonance-stabilized 2-methylallyl radical, 2-MA, is considered as a possible intermediate in the formation of polycyclic aromatic hydrocarbons (PAHs) in combustion processes. In this work, we report on its contribution to molecular growth in a high-temperature microreactor and provide mass-selective IR/UV ion dip spectra of the radical, as well as the various jet-cooled reaction products, employing free electron laser radiation in the mid-infrared region. Small (aromatic) hydrocarbons such as fulvene, benzene, styrene, or -xylene, as well as polycyclic molecules, like (methylated) naphthalene, were identified with the aid of DFT computations.

View Article and Find Full Text PDF

We report infrared spectra of xylylene isomers in the gas phase, using free electron laser (FEL) radiation. All xylylenes were generated by flash pyrolysis. The IR spectra were obtained by monitoring the ion dip signal, using a IR/UV double resonance scheme.

View Article and Find Full Text PDF

Deciphering the drivers of tree growth is a central aim of dendroecology. In this context, soil conditions may play a crucial role, since they determine the availability of water and nutrients for trees. Yet, effects of systematically differing soil conditions on tree growth render a marginally studied topic.

View Article and Find Full Text PDF

The three isomers of the xylyl radical, CH, are possible intermediates in the formation of soot and polycyclic aromatic hydrocarbons (PAH). Their infrared spectra have been recorded by IR/UV ion dip spectroscopy using free electron laser radiation. The radicals were generated by flash pyrolysis from the corresponding nitrites and resonantly ionized via the D ← D transition around 310 nm.

View Article and Find Full Text PDF

Major advances in the chemistry of 5th and 6th row heavy p-block element compounds have recently uncovered intriguing reactivity patterns towards small molecules such as H, CO, and ethylene. However, well-defined, homogeneous insertion reactions with carbon monoxide, one of the benchmark substrates in this field, have not been reported to date. We demonstrate here, that a cationic bismuth amide undergoes facile insertion of CO into the Bi-N bond under mild conditions.

View Article and Find Full Text PDF

ortho-Benzyne, a Kekulé-type biradical is considered to be a key intermediate in the formation of polycyclic aromatic hydrocarbons (PAH) and soot. In the present work we study the ortho-benzyne self-reactions in a hot microreactor and identify the high-temperature products by IR/UV spectroscopy and by photoion mass-selected threshold photoelectron spectroscopy (ms-TPES) in a free jet. Ms-TPES confirms formation of ortho-benzyne as generated from benzocyclobutenedione, as well as benzene, biphenylene, diacetylene, and acetylene, originating from the reaction o-CH → HCC-CCH + CH, and CH.

View Article and Find Full Text PDF

We investigated the excited-state dynamics of para-xylylene using a combination of field-induced surface hopping (FISH) simulations and time-resolved ionisation experiments. Our simulations predict an ultrafast decay of the initially excited bright state (S2/S3) to the S1 state on a sub-100 fs time scale, followed by return to the ground state within ∼1 ps. This is accompanied by a transient change of the biradical character of the molecule, as monitored by calculating natural orbital occupation numbers.

View Article and Find Full Text PDF

The investigation of the mechanisms of mechanochromic luminescence is of fundamental importance for the development of materials for photonic sensors, data storage, and luminescence switches. The structural origin of this phenomenon in phosphorescent molecular systems is rarely known and thus the formulation of structure-property relationships remains challenging. Changes in the M-M interactions have been proposed as the main mechanism with d coinage metal compounds.

View Article and Find Full Text PDF

Fourier-transform infrared (FT-IR) spectroscopic experiments were carried out during phosphate adsorption on highly crystalline gibbsite, poorly crystalline 2-line-ferrihydrite and amorphous iron-aluminum-hydroxide mixtures in the molar ratio 1:0, 10:1, 5:1, 1:1, 1:5, 1:10 and 0:1. The OH stretching vibrational bands were utilized to analyze changes in structural and surface OH groups during adsorption, because the position of characteristic PO vibrational bands can shift depending on reaction conditions, pH or adsorbed phosphate content. Adsorption and desorption kinetics were studied at pH6 and different initial phosphate concentrations to achieve varying phosphate coverage on the mineral surfaces.

View Article and Find Full Text PDF

We investigate the self-reaction of benzyl, C H , in a high-temperature pyrolysis reactor. The work is motivated by the observation that resonance-stabilized benzyl radicals can accumulate in reactive environments and contribute to the formation of polycyclic aromatic hydrocarbons (PAHs) and soot. Reaction products are detected by IR/UV ion dip spectroscopy, using infrared radiation from the free electron laser FELIX, and are identified by comparison with computed spectra.

View Article and Find Full Text PDF

Finding the materials, which help to control the water pollution caused by organic and bacterial pollutants is one of the challenging tasks for the scientific community. 2D sheets of WO and composite of WO and reduced graphene oxide (rGO) have been synthesized in a well-controlled way using a hydrothermal method. The as synthesized 2D sheet of WO and rGO-WO composite were characterized by various techniques.

View Article and Find Full Text PDF