Multiple sclerosis is a chronic autoimmune disease of the central nervous system characterized by myelin loss, axonal damage, and glial scar formation. Still, the underlying processes remain unclear, as numerous pathways and factors have been found to be involved in the development and progression of the disease. Therefore, it is of great importance to find suitable animal models as well as reliable methods for their precise and reproducible analysis.
View Article and Find Full Text PDFTo unravel the failure of remyelination in multiple sclerosis (MS) and to test promising remyelinating treatments, suitable animal models like the well-established cuprizone model are required. However, this model is only standardized in young mice. This does not represent the typical age of MS patients.
View Article and Find Full Text PDFRegulatory T cells (Treg) maintain immunological self-tolerance and their functional or numerical deficits are associated with progression of several neurological diseases. We examined the effects of Treg absence on the structure and integrity of the unchallenged murine brain. When compared to control, Treg-deficient FoxP3 mutant mice showed no differences in brain size, myelin amount and oligodendrocyte numbers.
View Article and Find Full Text PDF