A rapid, precise, and viability-retaining method for cytoplasmic molecule delivery is highly desired for cell engineering. Routine methods suffer from low throughput, lack of selectivity, requirement of helper compounds, predominant endosomal delivery, and/or are restricted to specific molecule classes. Photonic cell manipulation bears the potential to overcome these drawbacks.
View Article and Find Full Text PDFA sufficient histological evaluation is a key pillar in oncological treatment, especially in situations of cancer of unknown primary. CO2 laser technology is used in clinical routine of soft tissue surgery because of its cutting quality and availability. Diode pumped solid state Er(bium):YAG laser systems promise a higher cutting efficiency and minor thermal damages.
View Article and Find Full Text PDFThis paper presents a universal point-of-care system for fully automated quantification of human T-cell lymphotropic virus type 1 (HTLV-1) proviral load, including genomic RNA, based on digital reverse RNA transcription and c-DNA amplification by MD LAMP (mediator displacement loop-mediated isothermal amplification). A disposable microfluidic LabDisk with pre-stored reagents performs automated nucleic acid extraction, reaction setup, emulsification, reverse transcription, digital DNA amplification, and quantitative fluorogenic endpoint detection with universal reporter molecules. Automated nucleic acid extraction from a suspension of HTLV-1-infected CD4+ T-lymphocytes (MT-2 cells) yielded 8 ± 7 viral nucleic acid copies per MT-2 cell, very similar to the manual reference extraction (7 ± 2 nucleic acid copies).
View Article and Find Full Text PDFWe present an automated point-of-care testing (POCT) system for rapid detection of species- and resistance markers in methicillin-resistant Staphylococcus aureus (MRSA) at the level of single cells, directly from nasal swab samples. Our novel system allows clear differentiation between MRSA, methicillin-sensitive S. aureus (MSSA) and methicillin-resistant coagulase-negative staphylococci (MR-CoNS), which is not the case for currently used real-time quantitative PCR based systems.
View Article and Find Full Text PDFSpatially and temporally controlled drug delivery is important for implant and tissue engineering applications, as the efficacy and bioavailability of the drug can be enhanced, and can also allow for drugging stem cells at different stages of development. Long-term drug delivery over weeks to months is however difficult to achieve, and coating of 3D surfaces or creating patterned surfaces is a challenge using coating techniques like spin- and dip-coating. In this study, mesoporous films consisting of SBA-15 particles grown onto silicon wafers using wet processing were evaluated as a scaffold for drug delivery.
View Article and Find Full Text PDF