CRISPR/Cas technology has recently become the molecular tool of choice for gene function studies in plants as well as crop improvement. Wheat is a globally important staple crop with a well annotated genome and there is plenty of scope for improving its agriculturally important traits using genome editing technologies, such as CRISPR/Cas. As part of this study we targeted three different genes in hexaploid wheat : in the spring cultivar Cadenza as well as and in winter cultivars Cezanne, Goncourt and Prevert.
View Article and Find Full Text PDFSeptoria tritici blotch (STB), caused by the fungus Zymoseptoria tritici, is one of the most economically important diseases of wheat. Recently, both factors of a gene-for-gene interaction between Z. tritici and wheat, the wheat receptor-like kinase Stb6 and the Z.
View Article and Find Full Text PDFMany enzymes involved in photosynthesis possess highly conserved cysteine residues that serve as redox switches in chloroplasts. These redox switches function to activate or deactivate enzymes during light-dark transitions and have the function of fine-tuning their activities according to the intensity of light. Accordingly, many studies on chloroplast redox regulation have been conducted under the hypothesis that "fine regulation of the activities of these enzymes is crucial for efficient photosynthesis.
View Article and Find Full Text PDFBackground: CRISPR/Cas has recently become a widely used genome editing tool in various organisms, including plants. Applying CRISPR/Cas often requires delivering multiple expression units into plant and hence there is a need for a quick and easy cloning procedure. The modular cloning (MoClo), based on the Golden Gate (GG) method, has enabled development of cloning systems with standardised genetic parts, e.
View Article and Find Full Text PDFThe CRISPR/Cas technology has recently become the tool of choice for targeted genome modification in plants and beyond. Although CRSIPR/Cas offers a rapid and facile way of introducing changes at genomic loci of interest, its application is associated with off-targeting, i.e.
View Article and Find Full Text PDFThe CRISPR/Cas9 system has emerged as a powerful tool for targeted genome editing in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous end joining pathway or by homologous recombination (HR). While the first repair mechanism results in random mutations at the double-strand break site, HR uses the genetic information from a highly homologous repair template as blueprint for repair of the break.
View Article and Find Full Text PDFThe CRISPR/Cas9 system has emerged as a powerful tool for gene editing in plants and beyond. We have developed a plant vector system for targeted Cas9-dependent mutagenesis of genes in up to two different target sites in . This protocol describes a simple 1-week cloning procedure for a single T-DNA vector containing the genes for Cas9 and sgRNAs, as well as the detection of induced mutations .
View Article and Find Full Text PDFThe CRISPR/Cas9 system enables precision editing of the genome of the model plant and likely of any other organism. Tools and methods for further developing and optimizing this widespread and versatile system in would hence be welcomed. Here, we designed a generic vector system that can be used to clone any sgRNA sequence in a plant T-DNA vector containing an ubiquitously expressed gene.
View Article and Find Full Text PDFPlant metabolic engineering is a promising tool for biotechnological applications. Major goals include enhancing plant fitness for an increased product yield and improving or introducing novel pathways to synthesize industrially relevant products. Plant peroxisomes are favorable targets for metabolic engineering, because they are involved in diverse functions, including primary and secondary metabolism, development, abiotic stress response, and pathogen defense.
View Article and Find Full Text PDF