In this work, additively manufactured pin-joint specimens are analyzed for their mechanical performance and functionality. The functionality of a pin-joint is its ability to freely rotate. The specimens were produced using laser powder bed fusion technology with the titanium alloy Ti6Al4V.
View Article and Find Full Text PDFThis work introduced additively manufactured non-assembly, miniaturized pin-joints for pantographic metamaterials as perfect pivots. The titanium alloy Ti6Al4V was utilized with laser powder bed fusion technology. The pin-joints were produced using optimized process parameters required for manufacturing miniaturized joints, and they were printed at a particular angle to the build platform.
View Article and Find Full Text PDFIn the present work, a novel concept for metallic metamaterials is presented, motivated by the creation of next-generation reversible damping systems that can be exposed to various environmental conditions. For this purpose, a unit cell is designed that consists of a parallel arrangement of a spring and snap-fit mechanism. The combination of the two concepts enables damping properties one order of magnitude higher than those of the constituting metal material.
View Article and Find Full Text PDFThis work showcases a novel phenomenological method to create predictive simulations of metallic lattice structures. The samples were manufactured via laser powder bed fusion (LPBF). Simulating LPBF-manufactured metamaterials accurately presents a challenge.
View Article and Find Full Text PDF