Publications by authors named "Florian Griese"

Article Synopsis
  • X-ray Free Electron Lasers (XFELs) enhance crystallography by enabling high-quality data collection at unprecedented speeds, particularly with the upcoming megahertz superconducting FELs.
  • Traditional gas dynamic virtual nozzles (GDVNs) are limited due to high sample consumption, making them impractical for some protein studies while a new droplet-on-demand injection method shows promise with significantly lower consumption.
  • The study achieved a collection rate of 150,000 indexed patterns per hour at the European XFEL, yielding impressive lysozyme crystallography data at 1.38 Å resolution, marking a significant advancement in protein structure analysis.
View Article and Find Full Text PDF

Automated classification of astronomical sources is often challenging due to the scarcity of labelled training data. We present a data set with a total number of 2158 data items that contains radio galaxy images with their corresponding morphological labels taken from various catalogues [1,2]. The data set is curated by removing duplicates, ambiguous morphological labels and by different meta data formats.

View Article and Find Full Text PDF

Purpose: Using 4D magnetic particle imaging (MPI), intravascular optical coherence tomography (IVOCT) catheters are tracked in real time in order to compensate for image artifacts related to relative motion. Our approach demonstrates the feasibility for bimodal IVOCT and MPI in-vitro experiments.

Material And Methods: During IVOCT imaging of a stenosis phantom the catheter is tracked using MPI.

View Article and Find Full Text PDF

Magnetic particle imaging is a tomographic imaging technique capable of measuring the local concentration of magnetic nanoparticles that can be used as tracers in biomedical applications. Since MPI is still at a very early stage of development, there are only a few MPI systems worldwide that are primarily operated by technical research groups that develop the systems themselves. It is therefore difficult for researchers without direct access to an MPI system to obtain experimental MPI data.

View Article and Find Full Text PDF

Purpose: Intravascular optical coherence tomography (IVOCT) is a catheter-based image modality allowing for high-resolution imaging of vessels. It is based on a fast sequential acquisition of A-scans with an axial spatial resolution in the range of 5-10 μm, that is, one order of magnitude higher than in conventional methods like intravascular ultrasound or computed tomography angiography. However, position and orientation of the catheter in patient coordinates cannot be obtained from the IVOCT measurements alone.

View Article and Find Full Text PDF

Magnetic particle imaging (MPI) is a highly sensitive imaging method that enables the visualization of magnetic tracer materials with a temporal resolution of more than 46 volumes per second. In MPI, the size of the field of view (FoV) scales with the strengths of the applied magnetic fields. In clinical applications, those strengths are limited by peripheral nerve stimulation, specific absorption rates, and the requirement to acquire images of high spatial resolution.

View Article and Find Full Text PDF