This paper studies the possibility to convey information using tactile stimulation on fingertips. We designed and evaluated three tactile alphabets which are rendered by stretching the skin of the index's fingertip: (1) a Morse-like alphabet, (2) a symbolic alphabet using two successive dashes, and (3) a display of Roman letters based on the Unistrokes alphabet. All three alphabets (26 letters each) were evaluated through a user study in terms of recognition rate, intuitiveness, and learnability.
View Article and Find Full Text PDFExoskeletons are progressively reaching homes and workplaces, allowing interaction with virtual environments, remote control of robots, or assisting human operators in carrying heavy loads. Their design is however still a challenge as these robots, being mechanically linked to the operators who wear them, have to meet ergonomic constraints besides usual robotic requirements in terms of workspace, speed, or efforts. They have in particular to fit the anthropometry and mobility of their users.
View Article and Find Full Text PDFIEEE Trans Haptics
November 2015
Manual human-computer interfaces for virtual reality are designed to allow an operator interacting with a computer simulation as naturally as possible. Dexterous haptic interfaces are the best suited for this goal. They give intuitive and efficient control on the environment with haptic and tactile feedback.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
June 2012
A knee-joint exoskeleton design that can apply programmable torques to the articulation and that self-adjusts to its physiological movements is described. Self-adjustment means that the articular torque is automatically produced around the rotational axis of the joint. The requirements are first discussed and the conditions under which the system tracks the spatial relative movements of the limbs are given.
View Article and Find Full Text PDF