Genome editing (GE) represents a powerful approach to fight inherited blinding diseases in which the underlying mutations cause the degeneration of the light sensing photoreceptor cells of the retina. Successful GE requires the efficient repair of DNA double-stranded breaks (DSBs) generated during the treatment. Rod photoreceptors of adult mice have a highly specialized chromatin organization, do not efficiently express a variety of DSB response genes and repair DSBs very inefficiently.
View Article and Find Full Text PDFPurpose: Reaggregates from E6 embryonic chicken retina exhibit areas corresponding to an inner plexiform layer (IPL), which presents an ideal in vitro model to test conditions and constraints of cholinergic and glutamatergic network formation, providing a basis for retinal tissue engineering. Here, we show that ipl formation is regulated by cholinergic starburst amacrine cells (SACs), a glial scaffold and by L-glutamate.
Methods: Rosetted spheroids were cultured in absence or presence of 0.
Repeated ocular infections with Chlamydia trachomatis trigger the development of trachoma, the most common cause of infectious blindness worldwide. Water-filtered infrared A (wIRA) has shown positive effects on cultured cells and human skin. Our aim was to evaluate the potential of wIRA as a possible non-chemical treatment for trachoma patients.
View Article and Find Full Text PDFIonizing radiation (IR) exerts deleterious effects on the developing brain, since proliferative neuronal progenitor cells are highly sensitive to IR-induced DNA damage. Assuming a radiation response that is comparable to mammals, the chick embryo would represent a lower vertebrate model system that allows analysis of the mechanisms underlying this sensitivity, thereby contributing to the reduction, refinement and replacement of animal experiments. Thus, this study aimed to elucidate the radiation response of the embryonic chick retina in three selected embryonic stages.
View Article and Find Full Text PDFBackground: DNA double-strand break (DSB) repair is crucial for the maintenance of genomic stability, and chromatin organization represents one important factor influencing repair efficiency. Mouse rod photoreceptors with their inverted heterochromatin organization containing a single large chromocenter in the middle of the nucleus provide a unique model system to study DSB repair in heterochromatin of living animals.
Results: We observed that adult rod photoreceptors repair only half of the induced DSBs within 1 day after damage induction, a defect that is neither observed in any other cell type of the adult retina nor in rod photoreceptor precursor cells of postnatal day 4 mice.
Near infrared (NIR) and X-rays are radiations from different sides of the wavelength spectrum but both are used during medical treatments, as they have severe impacts on cellular processes, including metabolism, gene expression, proliferation and survival. However, both radiations differ strictly in their consequences for exposed patients: NIR effects are generally supposed to be positive, mostly ascribed to a stimulation of metabolism, whereas X-ray leads to genetic instability, an increase of reactive oxygen species (ROS) and DNA damages and finally to cellular death by apoptosis in tumor cells. Since genomic stability after X-irradiation depends on the mitochondrial metabolism, which is well known to be regulated by NIR, we analyzed the impact of NIR on cellular responses of fibroblasts, retinal progenitor cells and keratinocytes to X-radiation.
View Article and Find Full Text PDFWe used chicken retinospheroids (RS) to study the nuclear architecture of vertebrate cells in a three-dimensional (3D) cell culture system. The results showed that the different neuronal cell types of RS displayed an extreme form of radial nuclear organization. Chromatin was arranged into distinct radial zones which became already visible after DAPI staining.
View Article and Find Full Text PDFThe role(s) of basic fibroblast growth factor (bFGF, FGF-2) in the differentiation and survival of photoreceptor (PR) cells was investigated in three-dimensional reaggregated histotypic spheres, derived from dispersed cells of the embryonic day 6 chicken embryo retina. Novel data processing methods are introduced to reliably quantify sphere sizes and spatial distributions of immunochemical signals in spheroids. Supplementation with 25 ng/mL FGF-2 increased cell proliferation, detected by bromodeoxyuridine uptake, and growth of spheroids.
View Article and Find Full Text PDFPrevious experiments established that when the unicellular green alga Chlorella NC64A is inoculated with two viruses, usually only one virus replicates in a single cell. That is, the viruses mutually exclude one another. In the current study, we explore the possibility that virus-induced host membrane depolarization, at least partially caused by a virus-encoded K(+) channel (Kcv), is involved in this mutual exclusion.
View Article and Find Full Text PDFInfection of Chlorella NC64A cells by PBCV-1 produces a rapid depolarization of the host probably by incorporation of a viral-encoded K(+) channel (Kcv) into the host membrane. To examine the effect of an elevated conductance, we monitored the virus-stimulated efflux of K(+) from the chlorella cells. The results indicate that all 8 chlorella viruses tested evoked a host specific K(+) efflux with a concomitant decrease in the intracellular K(+).
View Article and Find Full Text PDFPrevious studies have established that chlorella viruses encode K(+) channels with different structural and functional properties. In the current study, we exploit the different sensitivities of these channels to Cs(+) to determine if the membrane depolarization observed during virus infection is caused by the activities of these channels. Infection of Chlorella NC64A with four viruses caused rapid membrane depolarization of similar amplitudes, but with different kinetics.
View Article and Find Full Text PDF