Publications by authors named "Florian Fiebig"

Theories and models of working memory (WM) were at least since the mid-1990s dominated by the persistent activity hypothesis. The past decade has seen rising concerns about the shortcomings of sustained activity as the mechanism for short-term maintenance of WM information in the light of accumulating experimental evidence for so-called activity-silent WM and the fundamental difficulty in explaining robust multi-item WM. In consequence, alternative theories are now explored mostly in the direction of fast synaptic plasticity as the underlying mechanism.

View Article and Find Full Text PDF

Episodic memory is a recollection of past personal experiences associated with particular times and places. This kind of memory is commonly subject to loss of contextual information or" semantization", which gradually decouples the encoded memory items from their associated contexts while transforming them into semantic or gist-like representations. Novel extensions to the classical Remember/Know behavioral paradigm attribute the loss of episodicity to multiple exposures of an item in different contexts.

View Article and Find Full Text PDF

Working memory (WM) is a key component of human memory and cognition. Computational models have been used to study the underlying neural mechanisms, but neglected the important role of short-term memory (STM) and long-term memory (LTM) interactions for WM. Here, we investigate these using a novel multiarea spiking neural network model of prefrontal cortex (PFC) and two parietotemporal cortical areas based on macaque data.

View Article and Find Full Text PDF

We present an electrophysiological model of double bouquet cells and integrate them into an established cortical columnar microcircuit model that has previously been used as a spiking attractor model for memory. Learning in that model relies on a Hebbian-Bayesian learning rule to condition recurrent connectivity between pyramidal cells. We here demonstrate that the inclusion of a biophysically plausible double bouquet cell model can solve earlier concerns about learning rules that simultaneously learn excitation and inhibition and might thus violate Dale's principle.

View Article and Find Full Text PDF

Unlabelled: A dominant theory of working memory (WM), referred to as the persistent activity hypothesis, holds that recurrently connected neural networks, presumably located in the prefrontal cortex, encode and maintain WM memory items through sustained elevated activity. Reexamination of experimental data has shown that prefrontal cortex activity in single units during delay periods is much more variable than predicted by such a theory and associated computational models. Alternative models of WM maintenance based on synaptic plasticity, such as short-term nonassociative (non-Hebbian) synaptic facilitation, have been suggested but cannot account for encoding of novel associations.

View Article and Find Full Text PDF

Declarative long-term memories are not created in an instant. Gradual stabilization and temporally shifting dependence of acquired declarative memories in different brain regions-called systems consolidation-can be tracked in time by lesion experiments. The observation of temporally graded retrograde amnesia (RA) following hippocampal lesions points to a gradual transfer of memory from hippocampus to neocortical long-term memory.

View Article and Find Full Text PDF