Publications by authors named "Florian Felix Pfaff"

To fully characterize the Co(III)-'nitrene radical' species that are proposed as intermediates in nitrene transfer reactions mediated by cobalt(II) porphyrins, different combinations of cobalt(II) complexes of porphyrins and nitrene transfer reagents were combined, and the generated species were studied using EPR, UV-vis, IR, VCD, UHR-ESI-MS, and XANES/XAFS measurements. Reactions of cobalt(II) porphyrins 1(P1) (P1 = meso-tetraphenylporphyrin (TPP)) and 1(P2) (P2 = 3,5-Di(t)Bu-ChenPhyrin) with organic azides 2(Ns) (NsN3), 2(Ts) (TsN3), and 2(Troc) (TrocN3) led to the formation of mono-nitrene species 3(P1)(Ns), 3(P2)(Ts), and 3(P2)(Troc), respectively, which are best described as [Co(III)(por)(NR″(•-))] nitrene radicals (imidyl radicals) resulting from single electron transfer from the cobalt(II) porphyrin to the 'nitrene' moiety (Ns: R″ = -SO2-p-C6H5NO2; Ts: R″ = -SO2C6H6; Troc: R″ = -C(O)OCH2CCl3). Remarkably, the reaction of 1(P1) with N-nosyl iminoiodane (PhI═NNs) 4(Ns) led to the formation of a bis-nitrene species 5(P1)(Ns).

View Article and Find Full Text PDF

Selective functionalization of unactivated C-H bonds, water oxidation, and dioxygen reduction are extremely important reactions in the context of finding energy carriers and conversion processes that are alternatives to the current fossil-based oil for energy. A range of metalloenzymes achieve these challenging tasks in biology by using cheap and abundant transition metals, such as iron, copper, and manganese. High-valent metal-oxo and metal-dioxygen (superoxo, peroxo, and hydroperoxo) cores act as active intermediates in many of these processes.

View Article and Find Full Text PDF

High-valent cobalt-oxo intermediates are proposed as reactive intermediates in a number of cobalt-complex-mediated oxidation reactions. Herein we report the spectroscopic capture of low-spin (S=1/2) Co(IV)-oxo species in the presence of redox-inactive metal ions, such as Sc(3+), Ce(3+), Y(3+), and Zn(2+), and the investigation of their reactivity in C-H bond activation and sulfoxidation reactions. Theoretical calculations predict that the binding of Lewis acidic metal ions to the cobalt-oxo core increases the electrophilicity of the oxygen atom, resulting in the redox tautomerism of a highly unstable [(TAML)Co(III)(O˙)](2-) species to a more stable [(TAML)Co(IV)(O)(M(n+))] core.

View Article and Find Full Text PDF

The behavior of the Lewis-acid adducts of two copper-nitrene [Cu(NR)](+) complexes in nitrene-transfer and H-atom abstraction reactions have been demonstrated to depend on the nature of the nitrene substituents. Two-state reactivity, in which a singlet ground state and a nearby triplet excited-state both contribute, provides a useful model for interpreting reactivity trends of the two compounds.

View Article and Find Full Text PDF

The redox properties of Ni complexes bound to a new ligand, [DMC-nit](+), where a N-heterocyclic nitrenium group is anchored on a 1,4,8,11-tetraazacyclotetradecane backbone, have been examined using spectroscopic and DFT methods. Ligand-based [(DMC-nit)Ni](2+/+) reduction and metal-based [(DMC-nit)Ni](2+/3+) oxidation processes have been established for the [(DMC-nit)Ni](+/2+/3+) redox series, which represents the first examples of nitrenium nitrogen (N(nit))-bound first-row transition-metal complexes. An unprecedented bent binding mode of N(nit) in [(DMC-nit)Ni](2+) is observed, which possibly results from the absence of any N(nit)→Ni σ-donation.

View Article and Find Full Text PDF

A heterobimetallic CuNi bis(μ-oxo) diamond core is shown to possess nucleophilic oxo groups, and has been demonstrated for the first time as a viable intermediate during the deformylation of fatty aldehydes by cyanobacterial aldehyde decarbonylase.

View Article and Find Full Text PDF

High-valent copper-nitrene intermediates have long been proposed to play a role in copper-catalyzed aziridination and amination reactions. However, such intermediates have eluded detection for decades, preventing the unambiguous assignments of mechanisms. Moreover, the electronic structure of the proposed copper-nitrene intermediates has also been controversially discussed in the literature.

View Article and Find Full Text PDF

Ni(III)-intermediates are trapped by EPR and UV/Vis spectroscopy in the reaction of a Ni(II) salt with mCPBA. On the basis of their oxo-transfer and hydrogen-atom abstraction abilities the intermediates are assigned as the elusive terminal Ni(III)-oxo/hydroxo species. The findings suggest that Ni(III)-O(H) moieties are viable reactants in oxidation catalysis.

View Article and Find Full Text PDF