Publications by authors named "Florian Feist"

Bulky cellulosic network structures (BRC) with densities between 60 and 130 g/l were investigated as a sustainable alternative to fossil-based foams for impact liners in bicycle helmets. The mechanical properties of BRC foams were characterized across a wide range of strain rates and incorporated into a validated finite element model of a hardshell helmet. Virtual impact tests simulating both consumer information and certification scenarios were conducted to compare BRC-lined helmets against conventional expanded polystyrene (EPS) designs.

View Article and Find Full Text PDF

In the pursuit of sustainable engineering solutions, material selection is increasingly directed toward resources that offer functional efficacy, economic feasibility, and minimal environmental impact. To replace environmentally damaging materials like aluminum with more sustainable alternatives like wood-based materials, it is essential to improve the durability and longevity of wood. This study explores the potential suitability of modified veneers as an outer protective layer for unmodified wooden load-bearing elements, providing a cost-effective and resource-efficient alternative to bulk modification.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses advancements in light-driven 3D additive manufacturing, focusing on the photothermal laser-printing of sub-micrometer ZnO structures for microelectronics.
  • It highlights three key improvements: using single-crystalline ZnO for better structure, utilizing dimethyl sulfoxide (DMSO) to achieve higher temperatures, and employing specialized substrates for improved light to heat conversion.
  • The process is noted for its efficiency since it requires no post-processing and can be conducted without a cleanroom environment, simplifying the fabrication of crystalline semiconductors.
View Article and Find Full Text PDF

The emergence of highly wavelength resolved reactivity information for complex photochemical reaction processes allows the establishment of multi-color reaction modes. One particularly powerful mode is the synergistic two-color reaction, where two colors of light have to be present in the same volume element to either enable or enhance photochemical reactivity that leads to a specific photoproduct. Herein, we introduce a two-color synergistic photochemical reaction system based on a diaryl indenone epoxide (DIO) photoswitch and the cis-to-trans isomerization of a bridged ring-strained azobenzene (SA), which respond to ultraviolet (365 nm) and visible light (430 nm), respectively, with different rates, forming a well-defined heterocyclic photoadduct, DIOSA, that we structurally confirm via single crystal x-ray diffraction (SXRD).

View Article and Find Full Text PDF

Reflecting on Giacomo Ciamician's revolutionary vision of harnessing sunlight to drive photochemical transformations, the field of materials science has evolved significantly, yet it has been constrained by the misconception that the highest reactivity in photochemical systems is achieved at the absorption maxima. Here, we explore this notion further with evidence from photochemical action plots, demonstrating that reactivity can indeed be maximal at wavelengths significantly separated from the absorption peak. By examining the implications of the disparity between absorptivity and photochemical reactivitiy, we explore its impact for the enhanced penetration depth of light in photoresists, the reduction of energy requirements for photochemical reactions, and its transformative potential for volumetric 3D printing.

View Article and Find Full Text PDF

Gradient macroporous polymers were produced by polymerization of emulsion templates comprising a continuous monomer phase and an internal aqueous template phase. To produce macroporous polymers with gradient composition, pore size, and foam density, we varied the template formulation, droplet size, and internal phase ratio of emulsion templates continuously and stacked those prior to polymerization. Using the outlined approach, it is possible to vary one property along the resulting macroporous polymer while retaining the other properties.

View Article and Find Full Text PDF

Single chain nanoparticles (SCNPs) are a highly versatile polymer architecture consisting of single polymer chains that are intramolecularly crosslinked. Currently, SCNPs are discussed as powerful macromolecular architectures for catalysis, delivery and sensors. Herein, we introduce a methodology based on Förster Resonance Energy Transfer (FRET) to evidence the folding of single polymer chains into SCNPs fluorescence readout.

View Article and Find Full Text PDF

We introduce a class of single-chain nanoparticles (SCNPs) that respond to visible light (λ =415 nm) with complete unfolding from their compact structure into linear chain analogues. The initial folding is achieved by a simple esterification reaction of the polymer backbone constituted of acrylic acid and polyethylene glycol carrying monomer units, introducing bimane moieties, which allow for the photochemical unfolding, reversing the ester-bond formation. The compaction and the light driven unfolding proceed cleanly and are readily followed by size exclusion chromatography (SEC) and diffusion ordered NMR spectroscopy (DOSY), monitoring the change in the hydrodynamic radius (R ).

View Article and Find Full Text PDF

Independently addressing photoreactive sites within one molecule with two colours of light is a formidable challenge. Here, we combine two sequence independent λ-orthogonal chromophores in one heterotelechelic dilinker molecule, to exploit their disparate reactivity utilizing the same reaction partner, a maleimide-containing polymer. We demonstrate that polymer network formation only proceeds if two colours of light are employed.

View Article and Find Full Text PDF

Wood, being renewable and highly abundant material, with excellent high specific strength and stiffness, has received increasing attention to be used in high performance applications such as the structural element of a battery case in an electric vehicle. For a successful implementation of wood in the automotive sector, it is, therefore, crucial to understand the behaviour of wood during and after temperature exposure and in the event of fire with the presence/absence of oxygen. In this study, the mechanical properties of thermally modified and unmodified European beech and birch in air and nitrogen environments at six different treatment intensities were characterised using compression tests, tensile tests, shear tests and Poisson's ratio tests.

View Article and Find Full Text PDF

We introduce single-chain nanoparticles (SCNPs) exclusively folded by covalently bonded ferrocene units. Specifially, we demonstrate the ability of 2-ferrocenyl-1,10-phenanthroline to fuse single-chain collapse with the concomitant introduction of a donor functionality allowing the installation of a Pd-catalytic site, affording the first heterobimetallic ferrocene-functionalized SCNP.

View Article and Find Full Text PDF
Article Synopsis
  • Printed organic and inorganic electronics are important for applications in sensors, bioelectronics, and security, but traditional printing methods often produce larger features and require high-temperature post-processing.
  • A new laser printing technique allows for the fabrication of semiconductor ZnO and metals Pt and Ag with feature sizes under 1 µm without the need for sintering after printing.
  • The method has demonstrated versatility by successfully creating functional electronic devices, including diodes, memristors, and transistors, using combinations of laser and inkjet printing techniques.
View Article and Find Full Text PDF

It is demonstrated that the postfunctionalization of solid polymeric microspheres can generate fully and throughout functionalized materials, contrary to the expectation that core-shell structures are generated. The full functionalization is illustrated on the example of photochemically generated microspheres, which are subsequently transformed into polyradical systems. Given the all-organic nature of the functionalized microspheres, characterization methods with high analytical sensitivity and spatial resolution are pioneered by directly visualizing the inner chemical distribution of the postfunctionalized microspheres based on characteristic electron energy loss signals in transmission electron microscopy (TEM).

View Article and Find Full Text PDF

Driven by the demand for highly specialized polymeric materials via milder, safer, and sustainable processes, we herein introduce a powerful, purely light driven platform for microsphere synthesis - including facile synthesis by sunlight. Our light-induced step-growth precipitation polymerization produces monodisperse particles (0.4-2.

View Article and Find Full Text PDF

We herein report the first light-driven selective monoderivatization (desymmetrization) of two chemically equivalent carbonyl groups in a single chromophore. By comparing of four symmetric regioisomers, featuring two equivalent -methylbenzaldehyde units, we identify dimethyltherephtalaldehydes (DMTAs) which can be activated in a dual wavelength-selective fashion. Under visible light and UV-light irradiation, DMTAs undergo two consecutive Diels-Alder reactions exhibiting near-quantitative -selectivity (>99%) and provide excellent yields (96-98%).

View Article and Find Full Text PDF

In order to use wood for structural and load-bearing purposes in mechanical engineering, basic information on the impact behaviour of the material over a wide temperature range is needed. Diffuse porous hardwoods such as solid birch wood () and solid beech wood () are particularly suited for the production of engineered wood products (EWPs) such as laminated veneer lumber (LVL) or plywood due to their processability in a veneer peeling process. In the frame of this study, solid birch wood and solid beech wood samples (300 × 20 × 20 mm) were characterised by means of an impact pendulum test setup (working capacity of 150 J) at five temperature levels, ranging from -30 °C to +90 °C.

View Article and Find Full Text PDF

Split Hopkinson bars are used for the dynamic mechanical characterisation of materials under high strain rates. Many of these test benches are designed in such a way that they can either be used for compressive or tensile loading. The goal of the present work is to develop a release mechanism for an elastically pre-stressed Split Hopkinson bar that can be universally used for tensile or compressive loading.

View Article and Find Full Text PDF

High-voltage busbars are important electrical components in today's electric vehicle battery systems. Mechanical deformations in the event of a vehicle crash could lead to electrical busbar failure and hazardous situations that pose a threat to people and surroundings. In order to ensure a safe application of busbars, this study investigated their mechanical behavior under high strain rate loading using a split Hopkinson pressure bar.

View Article and Find Full Text PDF

We introduce a highly efficient ligation system based on a visible light-induced rearrangement affording a thiophenol which rapidly undergoes thiol-Michael additions. Unlike conventional light-triggered thiol-ene/yne systems, which rely on the use of photocaged bases/nucleophiles, (organo)-photo catalysts, or radical photoinitiators, our system provides a light-induced reaction in the absence of any additives. The ligation is self-catalyzed the pyridine mediated deprotonation of the photochemically generated thiophenol.

View Article and Find Full Text PDF

The control of chemical functionalization with orthogonal light stimuli paves the way toward manipulating materials with unprecedented spatiotemporal resolution. To reach this goal, we herein introduce a photochemical reaction system that enables two-color control of covalent ligation via an -Diels-Alder cycloaddition between two separate light-responsive molecular entities: a UV-activated photocaged diene based on -quinodimethanes and a carbonyl dienophile appended to a diarylethene photoswitch, whose reactivity can be modulated upon illumination with UV and visible light.

View Article and Find Full Text PDF

Herein, we pioneer a wavelength-gated synthesis route to phenalene diimides. Consecutive Diels-Alder reactions of methylisophthalaldehydes and maleimides afford hexahydro-phenalene-1,6-diol diimides via 5-formyl-hexahydro-benzo[f]isoindoles as the intermediate. Both photoreactions are efficient (82-99 % yield) and exhibit excellent diastereoselectivity (62-98 % d.

View Article and Find Full Text PDF

We report a photochemical reaction system which requires activation by two colors of light. Specifically, a dual wavelength gated system is established by fusing the visible light mediated deprotection of a dithioacetal with the UV light activated Diels-Alder reaction of an o-methylbenzaldehyde with N-ethylmaleimide. Critically, both light sources are required to achieve the Diels-Alder adduct, irradiation with visible or UV light alone does not lead to the target product.

View Article and Find Full Text PDF

Herein, we introduce a fast, additive-free, ambient temperature photochemical approach - utilising the novel Diels-Alder cycloaddition of a photo-active ortho-methylbenzaldehyde (oMBA) with a terminal alkyne - for preparing functional acid-sensitive profluorescent nano-/microspheres in one step. Not previously reported, the possibility of applying such a reaction in the context of particle synthesis provides new possibilities for particle design, where multi-step reactivity can be gated into distinct steps. First, a photochemically-gated particle formation step yields a material possessing a reactive, spring-loaded intermediate at every cross-linking point.

View Article and Find Full Text PDF
Article Synopsis
  • Introduces a novel photoligation system that produces a pro-fluorescent Diels-Alder product, which can be transformed into a highly fluorescent naphthalene in the presence of acid.
  • The Diels-Alder reaction is triggered by UV or visible light, preventing interference from existing fluorescent products during the reaction phase.
  • This system enables precise measurement of conversion rates and simplifies the synthesis of functionalized alkynes for payload development.
View Article and Find Full Text PDF