Publications by authors named "Florian Erdinger"

The 64k pixel DEPFET module is the key sensitive component of the DEPFET Sensor with Signal Compression (DSSC), a large area 2D hybrid detector for capturing and measuring soft X-rays at the European XFEL. The final 1-megapixel camera has to detect photons with energies between [Formula: see text] and [Formula: see text], and must provide a peak frame rate of [Formula: see text] to cope with the unique bunch structure of the European XFEL. This work summarizes the functionalities and properties of the first modules assembled with full-format CMOS-DEPFET arrays, featuring [Formula: see text] hexagonally-shaped pixels with a side length of 136 μm.

View Article and Find Full Text PDF

Femtosecond transient soft X-ray absorption spectroscopy (XAS) is a very promising technique that can be employed at X-ray free-electron lasers (FELs) to investigate out-of-equilibrium dynamics for material and energy research. Here, a dedicated setup for soft X-rays available at the Spectroscopy and Coherent Scattering (SCS) instrument at the European X-ray Free-Electron Laser (European XFEL) is presented. It consists of a beam-splitting off-axis zone plate (BOZ) used in transmission to create three copies of the incoming beam, which are used to measure the transmitted intensity through the excited and unexcited sample, as well as to monitor the incoming intensity.

View Article and Find Full Text PDF

The advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence and pulse duration. All XFEL facilities built until recently provided X-ray pulses at a relatively low repetition rate, with limited data statistics. Here, results from the first megahertz-repetition-rate X-ray scattering experiments at the Spectroscopy and Coherent Scattering (SCS) instrument of the European XFEL are presented.

View Article and Find Full Text PDF
Article Synopsis
  • Topological states of matter are intriguing due to their unique physics and stability, but creating these states quickly is challenging.
  • Researchers demonstrated the rapid emergence of a topological phase with multiple magnetic skyrmions within picoseconds, using real-time soft X-ray scattering after activating with infrared laser.
  • A transient topological fluctuation state, influenced by a specific magnetic field, helps lower the energy barrier for this rapid formation, offering insights into topological transitions and potential for ultrafast switching in various materials.
View Article and Find Full Text PDF