Publications by authors named "Florian Emerstorfer"

In the above mentioned publication, part of Fig. 6B was distorted (extra diagonal lines appeared). The original article has been corrected and the proper version of Fig.

View Article and Find Full Text PDF

An integrative comparative transcriptomic approach on six sugar beet varieties showing different amount of sucrose loss during storage revealed genotype-specific main driver genes and pathways characterizing storability. Sugar beet is next to sugar cane one of the most important sugar crops accounting for about 15% of the sucrose produced worldwide. Since its processing is increasingly centralized, storage of beet roots over an extended time has become necessary.

View Article and Find Full Text PDF

Background: During the manufacture of sucrose from sugar beet, different microorganisms originating from the plant material as well as from the soil enter the process. Due to the formation of polysaccharide-based slimes, these contaminants may induce several adverse effects such as filtration problems during juice purification. Certain microorganisms also metabolize sucrose, leading to product losses with financial consequences.

View Article and Find Full Text PDF

Background: In this study the inhibition of hop beta acids on the growth of clostridia in soil-contaminated pressed sugar beet pulp silages was investigated. Hop beta acids are natural substances which display their effect at low concentrations. Fresh pressed beet pulp material was mixed with soil to artificially contaminate it with clostridia.

View Article and Find Full Text PDF