Publications by authors named "Florian Eckhardt"

Cytokine memory for IFN-γ production by effector/memory Th1 cells plays a key role in both protective and pathological immune responses. To understand the epigenetic mechanism determining the ontogeny of effector/memory Th1 cells characterized by stable effector functions, we identified a T-cell-specific methylation pattern at the IFNG promoter and CNS-1 in ex vivo effector/memory Th1 cells, and investigated methylation dynamics of these regions during the development of effector/memory Th1 cells. During Th1 differentiation, demethylation occurred at both the promoter and CNS-1 regions of IFNG as early as 16 h, and this process was independent of cell proliferation and DNA synthesis.

View Article and Find Full Text PDF

Cellular differentiation involves widespread epigenetic reprogramming, including modulation of DNA methylation patterns. Using Differential Methylation Hybridization (DMH) in combination with a custom DMH array containing 51,243 features covering more than 16,000 murine genes, we carried out a genome-wide screen for cell- and tissue-specific differentially methylated regions (tDMRs) in undifferentiated embryonic stem cells (ESCs), in in-vitro induced neural stem cells (NSCs) and 8 differentiated embryonic and adult tissues. Unsupervised clustering of the generated data showed distinct cell- and tissue-specific DNA methylation profiles, revealing 202 significant tDMRs (p<0.

View Article and Find Full Text PDF

DNA methylation is an important epigenetic mark that is involved in the regulation of many cellular processes such as gene expression, genomic imprinting and silencing of repetitive elements. Because of their ability to cause and capture phenotypic plasticity, epigenetic marks such as DNA methylation represent potential biomarkers to distinguish between different types of tissues and stages of differentiation. Here, we have identified differential DNA methylation in the gene body of the nitric oxide inhibitor Ddah2 that discriminates embryonic stem cells from neural stem cells and is positively correlated with differential gene expression.

View Article and Find Full Text PDF

A substantial proportion of human genes contain tissue-specifically DNA-methylated regions (TDMRs). However, little is known about the evolutionary conservation of differentially methylated loci, how they evolve, and the signals that regulate them. We have studied TDMR conservation in the PLG and TBX gene families and in 32 pseudogene-parental gene pairs.

View Article and Find Full Text PDF

Although transcriptional control is key for proper lung development, little is known about the possible accompanying epigenetic modifications. Here, we have used gene expression profiling to identify 99 genes that are upregulated in fetal lung and 354 genes that are upregulated in adult lung. From the differentially expressed genes, we analyzed the accompanying 5'-UTR methylation profiles of 43 genes.

View Article and Find Full Text PDF

Cell therapeutic approaches currently lack definitive quality control measures which guarantee safety in clinical applications and create consistent standards for regulatory approval. These approaches rely on isolation, purification and possibly ex vivo manipulation of donor cells. Since such cells are exposed to artificial environments, there is potential for deviations from natural growth processes.

View Article and Find Full Text PDF

Epigenetic modifications, including DNA methylation, profoundly influence gene expression of CD4(+) Th-specific cells thereby shaping memory Th cell function. We demonstrate here a correlation between a lacking fixed potential of human memory Th cells to re-express the immunoregulatory cytokine gene IL10 and its DNA methylation status. Memory Th cells secreting IL-10 or IFN-gamma were directly isolated ex vivo from peripheral blood of healthy volunteers, and the DNA methylation status of IL10 and IFNG was assessed.

View Article and Find Full Text PDF

In recent years, several new options have been introduced for the treatment of various neoplasias. Biomarkers are urgently needed to improve diagnosis and treatment selection. DNA metlhylation biomarkers unite these desirable characteristics because they relate to key aspects of tumor biology and can be measured reliably on routinely available patient specimens.

View Article and Find Full Text PDF

Mutations in the LMNA gene cause various phenotypes including partial lipodystrophy, muscular dystrophies, and progeroid syndromes. The specific mutation position within the LMNA sequence can partially predict the phenotype, but the underlying mechanisms for the development of these different phenotypes are still unclear. To investigate whether different DNA methylation patterns contribute to the development of different phenotypes caused by LMNA mutations, we analyzed a panel of ten candidate genes related to fat metabolism, aging, and a tendency to different methylation patterns: CSPG2, ESR1, IGF1R, IGFR2, LMNA, MLH1, RANBP1, RARB, ZMPSTE24, and TGFBR1.

View Article and Find Full Text PDF

Immortalized human cancer cell lines are widely used as tools and model systems in cancer research but their authenticity with regard to primary tissues remains a matter of debate. We have used differential methylation hybridisation to obtain comparative methylation profiles from normal and tumour tissues of lung and colon, and permanent cancer cell lines originally derived from these tissues. Average methylation differences only larger than 25% between sample groups were considered for the profiles and with this criterion approximately 1000 probesets, around 2% of the sites represented on the array, indicated differential methylation between normal lung and primary lung cancer tissue, and approximately 700 probesets between normal colon and primary colon cancer tissue.

View Article and Find Full Text PDF

Transcription factors play a crucial role during hematopoiesis by orchestrating lineage commitment and determining cellular fate. Although tight regulation of transcription factor expression appears to be essential, little is known about the epigenetic mechanisms involved in transcription factor gene regulation. We have analyzed DNA methylation profiles of 13 key transcription factor genes in primary cells of the hematopoietic cascade, lymphoma cell lines and lymph node biopsies of diffuse large B-cell- and T-cell-non-Hodgkin lymphoma patients.

View Article and Find Full Text PDF

DNA methylation is the most stable type of epigenetic modification modulating the transcriptional plasticity of mammalian genomes. Using bisulfite DNA sequencing, we report high-resolution methylation profiles of human chromosomes 6, 20 and 22, providing a resource of about 1.9 million CpG methylation values derived from 12 different tissues.

View Article and Find Full Text PDF

Over the last few decades, a wealth of treatment options have become available for breast cancer. To specifically direct those therapies to patients with the highest need who will receive the greatest benefit, biomarkers are urgently needed. Two specific needs seem to be most pressing: first is the need for prognostic markers, which would determine which group of patients may recover without adjuvant chemotherapy.

View Article and Find Full Text PDF

Deciphering the information encoded in the human genome is key for the further understanding of human biology, physiology and evolution. With the draft sequence of the human genome completed, elucidation of the epigenetic information layer of the human genome becomes accessible. Epigenetic mechanisms are mediated by either chemical modifications of the DNA itself or by modifications of proteins that are closely associated with DNA.

View Article and Find Full Text PDF