Publications by authors named "Florian De Roose"

Article Synopsis
  • Thin film photodiodes (TFPD), especially those made from halide perovskites, offer excellent optoelectronic properties, such as high absorption and fast charge transport, making them superior to other thin-film options.
  • The study showcases how integrating perovskite photodiodes with silicon read-out integrated circuits (ROIC) enables high-resolution 2D imaging and facilitates 3D imaging through advanced techniques like time-of-flight sensing.
  • This development presents a major advancement in TFPD technology, with potential applications in areas such as automotive systems, augmented reality (AR), and virtual reality (VR).
View Article and Find Full Text PDF

Thin-film photodiodes (TFPD) monolithically integrated on the Si Read-Out Integrated Circuitry (ROIC) are promising imaging platforms when beyond-silicon optoelectronic properties are required. Although TFPD device performance has improved significantly, the pixel development has been limited in terms of noise characteristics compared to the Si-based image sensors. Here, a thin-film-based pinned photodiode (TF-PPD) structure is presented, showing reduced kTC noise and dark current, accompanied with a high conversion gain (CG).

View Article and Find Full Text PDF

In this article, three different implementations of an Axon-Hillock circuit are presented, one of the basic building blocks of spiking neural networks. In this work, we explored the design of such circuits using a unipolar thin-film transistor technology based on amorphous InGaZnO, often used for large-area electronics. All the designed circuits are fabricated by direct material deposition and patterning on top of a flexible polyimide substrate.

View Article and Find Full Text PDF

Image sensors are must-have components of most consumer electronics devices. They enable portable camera systems, which find their way into billions of devices annually. Such high volumes are possible thanks to the complementary metal-oxide semiconductor (CMOS) platform, leveraging wafer-scale manufacturing.

View Article and Find Full Text PDF