Publications by authors named "Florian Charriere"

Digital holographic microscopy (DHM) allows optical-path-difference (OPD) measurements with nanometric accuracy. OPD induced by transparent cells depends on both the refractive index (RI) of cells and their morphology. This Letter presents a dual-wavelength DHM that allows us to separately measure both the RI and the cellular thickness by exploiting an enhanced dispersion of the perfusion medium achieved by the utilization of an extracellular dye.

View Article and Find Full Text PDF

Digital holographic microscopy (DHM) is applied to life sciences applications and demonstrate its capability of real-time imaging and quantitative measurements of physiological parameters such as cell volume or mean cell hemoglobin concentration (MCHC) of erythrocyte cells. DHM has the advantage to be non-invasive (no phototoxicity, no contrast agents) and allows a high throughput measurements.

View Article and Find Full Text PDF

We present here a three-dimensional evaluation of the amplitude point-spread function (APSF) of a microscope objective (MO), based on a single holographic acquisition of its pupil wavefront. The aberration function is extracted from this pupil measurements and then inserted in a scalar model of diffraction, allowing one to calculate the distribution of the complex wavefront propagated around the focal point. The accuracy of the results is compared with a direct measurement of the APSF with a second holographic system located in the image plane of the MO.

View Article and Find Full Text PDF

Digital Holographic Microscopy (DHM) is a single shot interferometric technique, which provides quantitative phase images with subwavelength axial accuracy. A short hologram acquisition time (down to microseconds), allows DHM to offer a reduced sensitivity to vibrations, and real time observation is achievable thanks to present performances of personal computers and charge coupled devices (CCDs). Fast dynamic imaging at low-light level involves few photons, requiring proper camera settings (integration time and gain of the CCD; power of the light source) to minimize the influence of shot noise on the hologram when the highest phase accuracy is aimed.

View Article and Find Full Text PDF

A technique to perform two-wavelengths digital holographic microscopy (DHM) measurements with a single hologram acquisition is presented. The vertical measurement range without phase ambiguity is extended to the micron-range, thanks to the resulting synthetic wavelength defined by the beating of two wavelengths with a separation of about 80nm. Real-time dual-wavelength imaging is made possible by using two reference waves having different wavelengths and propagation directions for the hologram recording.

View Article and Find Full Text PDF

The concept of numerical parametric lenses (NPL) is introduced to achieve wavefront reconstruction in digital holography. It is shown that operations usually performed by optical components and described in ray geometrical optics, such as image shifting, magnification, and especially complete aberration compensation (phase aberrations and image distortion), can be mimicked by numerical computation of a NPL. Furthermore, we demonstrate that automatic one-dimensional or two-dimensional fitting procedures allow adjustment of the NPL parameters as expressed in terms of standard or Zernike polynomial coefficients.

View Article and Find Full Text PDF

In digital holographic microscopy, shot noise is an intrinsic part of the recording process with the digital camera. We present a study based on simulations and real measurements describing the shot-noise influence in the quality of the reconstructed phase images. Different configurations of the reference wave and the object wave intensities will be discussed, illustrating the detection limit and the coherent amplification of the object wave.

View Article and Find Full Text PDF

We present a method for submicrometer tomographic imaging using multiple wavelengths in digital holographic microscopy. This method is based on the recording, at different wavelengths equally separated in the k domain, in off-axis geometry, of the interference between a reference wave and an object wave reflected by a microscopic specimen and magnified by a microscope objective. A CCD camera records the holograms consecutively, which are then numerically reconstructed following the convolution formulation to obtain each corresponding complex object wavefront.

View Article and Find Full Text PDF

Introducing a microscope objective in an interferometric setup induces a phase curvature on the resulting wavefront. In digital holography, the compensation of this curvature is often done by introducing an identical curvature in the reference arm and the hologram is then processed using a plane wave in the reconstruction. This physical compensation can be avoided, and several numerical methods exist to retrieve phase contrast images in which the microscope curvature is compensated.

View Article and Find Full Text PDF

This paper presents an optical diffraction tomography technique based on digital holographic microscopy. Quantitative 2-dimensional phase images are acquired for regularly-spaced angular positions of the specimen covering a total angle of pi, allowing to built 3-dimensional quantitative refractive index distributions by an inverse Radon transform. A 20x magnification allows a resolution better than 3 microm in all three dimensions, with accuracy better than 0.

View Article and Find Full Text PDF

In this paper we present a new method to achieve quantitative phase contrast imaging in Digital Holographic Microscopy (DHM) that allows to compensate for phase aberrations and image distortion by recording of a single reference hologram.We demonstrate that in particular cases in which the studied specimen does not have abrupt edges, the specimen's hologram itself can be used as reference hologram. We show that image distortion and phase aberrations introduced by a lens ball used as microscope objective are completely suppressed with our method.

View Article and Find Full Text PDF

We present a procedure that compensates for phase aberrations in digital holographic microscopy by computing a polynomial phase mask directly from the hologram. The phase-mask parameters are computed automatically without knowledge of physical values such as wave vectors, focal lengths, or distances. This method enables one to reconstruct correct and accurate phase distributions, even in the presence of strong and high-order aberrations.

View Article and Find Full Text PDF

We demonstrate the use of digital holographic microscopy (DHM) as a metrological tool in micro-optics testing. Measurement principles are compared with those performed with Twyman-Green, Mach-Zehnder, and white-light interferometers. Measurements performed on refractive microlenses with reflection DHM are compared with measurements performed with standard interferometers.

View Article and Find Full Text PDF

For what we believe to be the first time, digital holographic microscopy is applied to perform optical diffraction tomography of a pollen grain. Transmission phase images with nanometric axial accuracy are numerically reconstructed from holograms acquired for different orientations of the rotating sample; then the three-dimensional refractive index spatial distribution is computed by inverse radon transform. A precision of 0.

View Article and Find Full Text PDF

We show that digital holography can be combined easily with optical coherence tomography approach. Varying the reference path length is the means used to acquire a series of holograms at different depths, providing after reconstruction images of slices at different depths in the specimen thanks to the short-coherence length of light source. A metallic object, covered by a 150-microm-thick onion cell, is imaged with high resolution.

View Article and Find Full Text PDF