A cocatalytic effect of nitro compounds is described for the B(C6F5)3·H2O catalyzed azidation of tertiary aliphatic alcohols, enabling catalyst turnover for the first time and with a broad range of substrates. Kinetic investigations into this surprising effect reveal that nitro compounds induce a switch from first order concentration dependence in Brønsted acid to second order concentration dependence in Brønsted acid and second order dependence in the nitro compounds. Kinetic, electronic, and spectroscopic evidence suggests that higher order hydrogen-bonded aggregates of nitro compounds and acids are the kinetically competent Brønsted acid catalysts.
View Article and Find Full Text PDFThe inability to decouple Lewis acid catalysis from undesirable Brønsted acid catalysed side reactions when water or other protic functional groups are necessarily present has forced chemists to choose between powerful but harsh catalysts or poor but mild ones, a dichotomy that restricts the substrate scope of dehydrative transformations such as the direct SN1 reaction of alcohols. A systematic survey of Lewis and Brønsted acids reveals that the strong non-hydrolyzable Lewis acid B(C6F5)3 leads to highly chemoselective alcohol substitution in the presence of acid-sensitive alkenes, protecting groups and other functional groups without the typical compromise in reaction rates, substrate scope and catalyst loading.
View Article and Find Full Text PDFThe heterolytic splitting of hydrogen by two types of [2.2]paracyclophane derived bisphosphines (1, 2a and 2b) in combination with tris(pentafluorophenyl)borane (3) at room temperature is described. The corresponding frustrated Lewis pairs (FLPs) exhibit different behavior in the activation of hydrogen.
View Article and Find Full Text PDFVoluminous amides were coupled with deactivated, sterically hindered aryl chlorides in excellent yields providing products, which have not been efficiently accessible by transition metal catalysis so far. Application of an unsymmetric bisphosphine ligand was critical for the high catalytic activity.
View Article and Find Full Text PDFThe first C-S bond formation/cross-coupling/cyclization domino reaction using thiourea as a cheap and easy to handle dihydrosulfide surrogate has been developed. Structurally important biarylthioether, benzo[b]thiophenes, and thieno[3,2-b]thiophene scaffolds are provided in high yield.
View Article and Find Full Text PDF