We convert a mid-infrared frequency comb to near-infrared wavelengths through sum-frequency generation with a 1.064 μm CW laser in an aperiodically poled ZnO:LiNbO(3) waveguide. Upconversion of light in the range of 2.
View Article and Find Full Text PDFWe present and characterize a two-dimensional (2D) imaging spectrometer based on a virtually imaged phased array (VIPA) disperser for rapid, high-resolution molecular detection using mid-infrared (MIR) frequency combs at 3.1 and 3.8 μm.
View Article and Find Full Text PDFWe present a 2 μm frequency comb based on a reliable mode-locked Er:fiber laser with 100 MHz repetition rate. After shifting the spectrum of the amplified Er:fiber comb to longer wavelengths, a single-clad Tm/Ho:fiber is used as a self-pumped pre-amplifier to generate a coherent and broadband spectrum centered at 1.93 μm.
View Article and Find Full Text PDFWe achieve a quantum-noise-limited absorption sensitivity of 1.7×10(-12) cm(-1) per spectral element at 400 s of acquisition time with cavity-enhanced frequency comb spectroscopy, the highest demonstrated for a comb-based technique. The system comprises a frequency comb locked to a high-finesse cavity and a fast-scanning Fourier transform spectrometer with an ultralow-noise autobalancing detector.
View Article and Find Full Text PDFWe present a first implementation of optical-frequency-comb-based rapid trace gas detection in the molecular fingerprint region in the mid-infrared. Near-real-time acquisition of broadband absorption spectra with 0.0056 cm(-1) maximum resolution is demonstrated using a frequency comb Fourier transform spectrometer which operates in the 2100-to-3700-cm(-1) spectral region.
View Article and Find Full Text PDFAnnu Rev Anal Chem (Palo Alto Calif)
October 2010
Cavity-enhanced direct frequency comb spectroscopy combines broad bandwidth, high spectral resolution, and ultrahigh detection sensitivity in one experimental platform based on an optical frequency comb efficiently coupled to a high-finesse cavity. The effective interaction length between light and matter is increased by the cavity, massively enhancing the sensitivity for measurement of optical losses. Individual comb components act as independent detection channels across a broad spectral window, providing rapid parallel processing.
View Article and Find Full Text PDFWe present a high-power optical-parametric-oscillator (OPO) based frequency comb in the mid-IR wavelength region. The system employs periodically poled lithium niobate and is singly resonant for the signal. It is synchronously pumped by a 10 W femtosecond Yb:fiber laser centered at 1.
View Article and Find Full Text PDFWe present what is believed to be the first direct measurement of the relative timing jitter between the two parallel pulse trains of a two-branch femtosecond erbium-doped fiber laser, operated without active stabilization. The system provides independently tunable pulses in the near infrared with durations down to 13 fs. Using an interferometric optical cross-correlator, the phase-noise spectral density is measured with high sensitivity in a range from 1 Hz up to the Nyquist frequency of 24.
View Article and Find Full Text PDFWe report on highly efficient second, third and fourth harmonic generation from a femtosecond erbium-doped fiber source operating at 98 MHz repetition rate. By use of quasi-phase-matching in fan-out poled MgO:LiNbO(3), we generate pulses at 770 nm, 520 nm and 390 nm, with corresponding average powers of 120 mW, 55 mW and 6 mW, respectively. Our device can be employed as a two-color source providing radiation from ultraviolet to near infrared.
View Article and Find Full Text PDFMode-locked erbium-doped fiber lasers are ideal comb generators for optical frequency metrology. We compare two fiber frequency combs by measuring an optical frequency independently with both combs and comparing their results. The two frequency measurements agree within 6x10-16.
View Article and Find Full Text PDFWe present a highly versatile approach to the application of femtosecond Er:fiber lasers in optical frequency metrology. Our concept relies on the implementation of two parallel amplifiers, seeded by a single master oscillator. With the comb spacing locked to a frequency of 100 MHz, we apply the output from the first amplifier to generate a feedback signal to achieve a simultaneous phase-lock for the comb offset frequency.
View Article and Find Full Text PDFCoupling femtosecond light pulses from an all-fiber Er:laser system into a dispersion-shifted and highly non-linear fiber, we generate output spectra exhibiting two broadband and mutually coherent maxima. Depending on the chirp of the input pulse, the spectral separation is easily tunable over a wide range up to values exceeding 100 THz. In this way, the source provides access to an ultrabroadband wavelength interval from 1130 to 1950 nm.
View Article and Find Full Text PDF