Publications by authors named "Flores-Ponce Xochitl"

Article Synopsis
  • * This review focuses on the intrinsic differences between SNc and VTA neurons, including aspects like gene expression, calcium dynamics, energy metabolism, and responses to reactive oxygen species (ROS), particularly during aging.
  • * Key findings indicate that SNc neurons have higher energy demands and ROS production due to their complex structure, making them more prone to degeneration, especially when affected by PD-related mutations impacting metabolic pathways.
View Article and Find Full Text PDF

Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta, which results in a prominent reduction of striatal dopamine levels leading to motor alterations. The mechanisms underlying neurodegeneration in PD remain unknown. Here, we generated an induced pluripotent stem cell line from dermal fibroblasts of a Mexican patient diagnosed with sporadic PD (UNAMi002-A) and another cell line from dermal fibroblasts of a patient carrying the point mutation c.

View Article and Find Full Text PDF

Human embryonic stem cells (hESCs) differentiate into specialized cells, including midbrain dopaminergic neurons (DANs), and Non-human primates (NHPs) injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine develop some alterations observed in Parkinson's disease (PD) patients. Here, we obtained well-characterized DANs from hESCs and transplanted them into two parkinsonian monkeys to assess their behavioral and imaging changes. DANs from hESCs expressed dopaminergic markers, generated action potentials, and released dopamine (DA) in vitro.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a neurodegenerative disease caused by progressive loss of dopaminergic neurons in the substantia nigra pars compacta, which results in motor alterations. The exact mechanisms underlying the dopaminergic neurodegeneration in PD are still unknown. Here, we generated a human induced pluripotent stem cell (iPSC) line from dermal fibroblasts of a Mexican patient diagnosed with sporadic PD.

View Article and Find Full Text PDF

A generation of induced pluripotent stem cells (iPSC) by ectopic expression of OCT4, SOX2, KLF4, and c-MYC has established promising opportunities for stem cell research, drug discovery, and disease modeling. While this forced genetic expression represents an advantage, there will always be an issue with genomic instability and transient pluripotency genes reactivation that might preclude their clinical application. During the reprogramming process, a somatic cell must undergo several epigenetic modifications to induce groups of genes capable of reactivating the endogenous pluripotency core.

View Article and Find Full Text PDF

Background: In epilepsy, seizures are generated by abnormal synchronous activity in neurons. In the rat hippocampus (HIP), epileptiform activity has been found to be associated with gap junctions (GJs). GJs are formed by the combination of two hemichannels, each composed of six connexins.

View Article and Find Full Text PDF