Clonal hematopoiesis (CH) arises when hematopoietic stem cells (HSCs) acquire mutations, most frequently in the DNMT3A and TET2 genes, conferring a competitive advantage through mechanisms that remain unclear. To gain insight into how CH mutations enable gradual clonal expansion, we used single-cell multi-omics with high-fidelity genotyping on human CH bone marrow (BM) samples. Most of the selective advantage of mutant cells occurs within HSCs.
View Article and Find Full Text PDFIn BCR-ABL1 lymphoblastic leukemia, treatment heterogeneity to tyrosine kinase inhibitors (TKIs), especially in the absence of kinase domain mutations in BCR-ABL1, is poorly understood. Through deep molecular profiling, we uncovered three transcriptomic subtypes of BCR-ABL1 lymphoblastic leukemia, each representing a maturation arrest at a stage of B-cell progenitor differentiation. An earlier arrest was associated with lineage promiscuity, treatment refractoriness and poor patient outcomes.
View Article and Find Full Text PDFBone marrow stromal cells (BMSCs) are a key part of the hematopoietic niche. Mouse and human BMSCs are recognized by different markers (LepR and NGFR/CD271, respectively). However, there has not been a detailed in situ comparison of both populations within the hematopoietic microenvironment.
View Article and Find Full Text PDFAge-related clonal hematopoiesis is a major risk factor for myeloid malignancy and myeloid skewing is a hallmark of aging. However, while it is known that non-cell-autonomous components of the microenvironment can also influence this risk, there have been few studies of how the spatial architecture of human bone marrow (BM) changes with aging. Here, we show that BM adiposity increases with age, which correlates with increased density of maturing myeloid cells and CD34+ hematopoietic stem/progenitor cells (HSPCs) and an increased proportion of HSPCs adjacent to adipocytes.
View Article and Find Full Text PDFHematopoietic stem and progenitor cells (HSPCs) tightly couple maintenance of the bone marrow (BM) reservoir, including undifferentiated long-term repopulating hematopoietic stem cells (LT-HSCs), with intensive daily production of mature leukocytes and blood replenishment. We found two daily peaks of BM HSPC activity that are initiated by onset of light and darkness providing this coupling. Both peaks follow transient elevation of BM norepinephrine and TNF secretion, which temporarily increase HSPC reactive oxygen species (ROS) levels.
View Article and Find Full Text PDFIntroduction: Pancreatic ductal adenocarcinoma (PDAC) and ampulla of Vater adenocarcinomas (AVAC) are periampullary tumors. These tumors have overlapping symptoms and a common treatment, but present differences in their survival and biology. No recent studies in Mexico have been published that describe the clinicopathological characteristics of these tumors.
View Article and Find Full Text PDFBone marrow contains numerous different cell types arising from hematopoietic stem cells (HSCs) and non-hematopoietic mesenchymal/skeletal stem cells, in addition to other cell types such as endothelial cells- these non-hematopoietic cells are commonly referred to as stromal cells or microenvironment cells. HSC function is intimately linked to complex signals integrated by their niches, formed by combinations of hematopoietic and stromal cells. Studies of hematopoietic cells have been significantly advanced by flow cytometry methods, enabling the quantitation of each cell type in normal and perturbed situations, in addition to the isolation of these cells for molecular and functional studies.
View Article and Find Full Text PDFStem Cells Int
November 2017
Mesenchymal stem/stromal cells (MSCs) from bone marrow (BM) have been used in coculture systems as a feeder layer for promoting the expansion of hematopoietic progenitor cells (HPCs) for hematopoietic cell transplantation. Because BM has some drawbacks, umbilical cord blood (UCB) and placenta (PL) have been proposed as possible alternative sources of MSCs. However, MSCs from UCB and PL sources have not been compared to determine which of these cell populations has the best capacity of promoting hematopoietic expansion.
View Article and Find Full Text PDFControversy and context: two words that exemplified this year's International Society for Experimental Hematology meeting. Leaders in the field of hematology from around the world gathered in San Diego in August of 2016 to discuss cutting-edge research on diverse topics such as hemoglobin switching, hematopoietic stem cell emergence, leukemogenesis, and aging. Major questions discussed included the "when, where, and how" of hematopoietic emergence, bone marrow residence, and disease origination.
View Article and Find Full Text PDFStem Cells Dev
September 2016
The differentiation capacity, hematopoietic support, and immunomodulatory properties of human bone marrow mesenchymal stromal cells (BM-MSCs) make them attractive therapeutic agents for a wide range of diseases. Clinical scale cultures (CSCs) have been used to expand BM-MSCs for their use in cell therapy protocols; however, little is known about the functionality of the expanded cells. The main goal of the present study was to evaluate the functional characteristics of BM-MSCs expanded from CSCs to determine the quality of the cells for cellular therapy protocols.
View Article and Find Full Text PDFWe review the murine and human microenvironment and hematopoietic stem cell niche in the context of intact bone marrow architecture in man and mouse, both in normal and in myelodysplastic syndrome marrow. We propose that the complexity of the hematopoietic stem cell niche can usefully be approached in the context of its topobiology, and we provide a model that incorporates in vitro and in vivo models as well as in situ findings from intact human marrow to explain the changes seen in myelodysplastic syndrome patients. We highlight the clinical application of the study of the bone marrow microenvironment and its topobiology in myelodysplastic syndromes.
View Article and Find Full Text PDFAmid the beauty of the Kyoto countryside, leaders in the field of hematology met at the 44th annual International Society for Experimental Hematology (ISEH) meeting in late September 2015. Led by ISEH President Paul Frenette and President-Elect David Traver, the meeting covered many aspects of hematopoiesis with a focus on technology. At the meeting, it became clear that the future of hematology is being shaped by innovations in single-cell "omics" and imaging approaches that will provide answers to age-old questions on cellular identity.
View Article and Find Full Text PDFIn vitro, Imatinib inhibits the proliferation and stimulates the osteogenic and adipogenic differentiation of mesenchymal stromal cells (MSC). However, it is unknown whether Imatinib affects the biology of MSC in vivo. We asked whether MSC from long-term Imatinib-treated CML patients were affected by the in vivo treatment.
View Article and Find Full Text PDFBone marrow-mesenchymal stromal cells (BM-MSCs) have immunosuppressive properties and have been used in cell therapies as immune regulators for the treatment of graft-versus-host disease. We have previously characterized several biological properties of MSCs from placenta (PL) and umbilical cord blood (UCB), and compared them to those of BM-the gold standard. In the present study, we have compared MSCs from BM, UCB, and PL in terms of their immunosuppressive properties against lymphoid cell populations enriched for CD3(+) T cells.
View Article and Find Full Text PDFMesenchymal stromal cells (MSCs) have been isolated from different tumors and it has been suggested that they support tumor growth through immunosuppression processes that favor tumor cell evasion from the immune system. To date, however, the presence of MSCs in cervical cancer (CeCa) and their possible role in tumor growth remains unknown. Herein we report on the presence of MSCs in cervical tissue, both in normal conditions (NCx-MSCs) and in CeCa (CeCa-MSCs), and described several biological properties of such cells.
View Article and Find Full Text PDFMesenchymal stromal cells (MSCs) support hematopoiesis and are cytogenetically and functionally abnormal in myelodysplastic syndrome (MDS), implying a possible pathophysiologic role in MDS and potential utility as a diagnostic or risk-stratifying tool. We have analyzed putative MSC markers and their relationship to CD34+ hematopoietic stem/progenitor cells (HSPCs) within intact human bone marrow in paraffin-embedded bone marrow core biopsies of benign, MDS and leukemic (AML) marrows using tissue microarrays to facilitate scanning, image analysis and quantitation. We found that CD271+, ALP+ MSCs formed an extensive branching perivascular, periosteal and parenchymal network.
View Article and Find Full Text PDFBlood Cells Mol Dis
December 2011
In trying to contribute to our knowledge on the role of Notch and its ligands within the human hematopoietic system, we have assessed the effects of the OP9 stroma cell line - naturally expressing Jagged-1 - transduced with either the Delta-1 gene (OP9-DL1 cells) or with vector alone (OP9-V), on the in vitro growth of two different hematopoietic cell populations. Primitive (CD34(+) CD38(-) Lin(-)) and intermediate (CD34(+) CD38(+) Lin(-)) CD34(+) cell subsets from human cord blood were cultured in the presence of 7 stimulatory cytokines under four different conditions: cytokines alone (control); cytokines and mesenchymal stromal cells; cytokines and OP9-V cells; cytokines and OP9-DL1 cells. Proliferation and expansion were determined after 7days of culture.
View Article and Find Full Text PDFCytotherapy
June 2010
Background Aims: We have previously characterized the in vitro growth of two cord blood-derived hematopoietic cell populations in liquid cultures supplemented with recombinant cytokines. In the present study, we assessed the effects of bone marrow-derived mesenchymal stromal cells (MSC) on the growth of such cells.
Methods: CD34(+) CD38(+) Lin(-) and CD34(+) CD38(-) Lin(-) cells were obtained by negative selection, and cultured in the presence of marrow-derived MSC and/or early- and late-acting cytokines.
Background: Bone marrow (BM) has been recognized as the main source of mesenchymal stromal cells (MSC); however, MSC have also been detected in umbilical cord blood (UCB) and placenta (PL). In the present study, we obtained MSC from these three sources and characterized them in a comparative manner.
Methods: MSC were obtained from BM, UCB and PL samples and analyzed to determine their morphology, cell-surface antigen (Ag) expression and differentiation potential.
For about 40 years, the biology of human myeloid leukemia (ML) has been studied in different in vitro systems. Throughout this time, semisolid colony assays, Dexter-type long-term cultures and liquid suspension cultures have contributed to our understanding of the mechanisms involved in the origin and progression of this hematological disorder. By using such systems, it has been possible to identify the cells in which leukemia originates; to recognize a functional hierarchy within the hematopoietic system of leukemia patients; to identify factors, soluble and cell-associated, that regulate leukemic growth; and to study the effects of different antineoplastic drugs.
View Article and Find Full Text PDFTwo different reports, including one from our own group, have recently demonstrated the presence of severe chromosomal abnormalities in mesenchymal stem cells (MSC) from patients with myelodysplastic syndromes (MDS). In the present study, we have assessed whether such cytogenetic abnormalities result in functional deficiencies in vitro. We found that both normal and MDS MSC showed similar expression patterns of cell adhesion molecules and extracellular matrix proteins.
View Article and Find Full Text PDFIn the last years, stem cells have drawn the attention of various sectors of society for many reasons. From the basic point of view, stem cells represent an ideal model to study cell differentiation and self-renewal mechanisms. However, their potential in cell therapy and regenerative medicine has triggered the increasing amount of knowledge in this area.
View Article and Find Full Text PDFLeuk Lymphoma
July 2006
One has previously characterized two different hematopoietic cell populations (obtained by negative-selection) from normal bone marrow. Population I was enriched for CD34+ Lin- cells, whereas Population II was enriched for CD34+ CD38- Lin- cells. Both populations showed elevated proliferation and expansion potentials in serum-free liquid cultures, supplemented with a combination of eight different cytokines, with the latter displaying more immature features than the former.
View Article and Find Full Text PDF