Publications by authors named "Florentine Gilis"

The SLC35 (Solute Carrier 35) family members acting as nucleotide sugar transporters are typically localized in the endoplasmic reticulum or Golgi apparatus. It is, therefore, intriguing that some reports document the presence of orphan transporters SLC35F1 and SLC35F6 within the endosomal and lysosomal system. Here, we compared the subcellular distribution of these proteins and found that they are concentrated in separate compartments; i.

View Article and Find Full Text PDF

Mucopolysaccharidosis IX is a lysosomal storage disorder caused by a deficiency in HYAL1, an enzyme that degrades hyaluronic acid at acidic pH. This disease causes juvenile arthritis in humans and osteoarthritis in the Hyal1 knockout mouse model. Our past research revealed that HYAL1 is strikingly upregulated (~ 25x) upon differentiation of bone marrow monocytes into osteoclasts.

View Article and Find Full Text PDF

ATG9A is the only polytopic protein of the mammalian autophagy-related protein family whose members regulate autophagosome formation during macroautophagy. At steady state, ATG9A localizes to several intracellular sites, including the Golgi apparatus, endosomes and the plasma membrane, and it redistributes towards autophagosomes upon autophagy induction. Interestingly, the transport of yeast Atg9 to the pre-autophagosomal structure depends on its self-association, which is mediated by a short amino acid motif located in the C-terminal region of the protein.

View Article and Find Full Text PDF

ATG9A is a multispanning membrane protein required for autophagosome formation. Under basal conditions, neosynthesized ATG9A proteins travel to the Golgi apparatus and cycle between the trans-Golgi network and endosomes. In the present work, we searched for molecular determinants involved in the subcellular trafficking of human ATG9A in HeLa cells using sequential deletions and point mutations.

View Article and Find Full Text PDF

How, in the absence of a functional mannose 6-phosphate (Man-6-P)-signal-dependent transport pathway, some acid hydrolases remain sorted to endolysosomes in the brain is poorly understood. We demonstrate that cathepsin D binds to mouse SEZ6L2, a type 1 transmembrane protein predominantly expressed in the brain. Studies of the subcellular trafficking of SEZ6L2, and its silencing in a mouse neuroblastoma cell line reveal that SEZ6L2 is involved in the trafficking of cathepsin D to endosomes.

View Article and Find Full Text PDF

It has long been known that liver lysosomes contain an endoglycosidase activity able to degrade the high molecular mass glycosaminoglycan hyaluronic acid (HA). The identification and cloning of a hyaluronidase with an acidic pH optimum, Hyal-1, suggested it might be responsible for this activity. However, we previously reported that this hydrolase could only be detected in pre-lysosomal compartments of the mouse liver using a zymography technique that allows the detection of Hyal-1 activity after SDS-PAGE ("renatured protein zymography").

View Article and Find Full Text PDF

The hyaluronidase Hyal-1 is an acid hydrolase that degrades hyaluronic acid (HA), a component of the extracellular matrix. It is often designated as a lysosomal protein. Yet few data are available on its intracellular localization and trafficking.

View Article and Find Full Text PDF