In this study, we report on the development of hydroxyapatite (HAp) and samarium-doped hydroxyapatite (SmHAp) nanoparticles using a cost-effective method and their biological effects on a bone-derived cell line MC3T3-E1. The physicochemical and biological features of HAp and SmHAp nanoparticles are explored. The X-ray diffraction (XRD) studies revealed that no additional peaks were observed after the integration of samarium (Sm) ions into the HAp structure.
View Article and Find Full Text PDFBackground: Transient receptor potential channels (TRP) are overexpressed in some pancreatic adenocarcinoma (PDAC) patients and cell lines, settling them as putative therapeutic targets in this disease. Reactive oxygen species (ROS), with levels increased in PDAC, modulate some members of the TRP family renamed "redox channels". Here, we investigate the direct effects of 4-hydroxinonenal (4-HNE) on TRPA1, natively expressed in PDAC cell lines and in association with cell migration and cell cycle progression.
View Article and Find Full Text PDFThe channels from the superfamily of transient receptor potential (TRP) activated by reactive oxygen species (ROS) can be defined as redox channels. Those with the best exposure of the cysteine residues and, hence, the most sensitive to oxidative stress are TRPC4, TRPC5, TRPV1, TRPV4, and TRPA1, while others, such as TRPC3, TRPM2, and TRPM7, are indirectly activated by ROS. Furthermore, activation by ROS has different effects on the tumorigenic process: some TRP channels may, upon activation, stimulate proliferation, apoptosis, or migration of cancer cells, while others inhibit these processes, depending on the cancer type, tumoral microenvironment, and, finally, on the methods used for evaluation.
View Article and Find Full Text PDF