Publications by authors named "Florentin Coppey"

The efficient and accurate analysis of illicit drugs remains a constant challenge in Australia given the high volume of drugs trafficked into and around the country. Portable drug testing technologies facilitate the decentralisation of the forensic laboratory and enable analytical data to be acted upon more efficiently. Near-infrared (NIR) spectroscopy combined with chemometric modelling (machine learning algorithms) has been highlighted as a portable drug testing technology that is rapid and accurate.

View Article and Find Full Text PDF

Facing the problem of backlogs in the forensic laboratories, the field of illicit drugs analyses has recently seen the development of different types of portable devices. Their main purpose is to be used directly by the police in order to reduce the number of specimens that are sent to the laboratories. Several portable devices have shown promising results.

View Article and Find Full Text PDF

The aim of the present study was to explore the feasibility of applying near-infrared (NIR) spectroscopy for the quantitative analysis of Δ-tetrahydrocannabinol (THC) in cannabis products using handheld devices. A preliminary study was conducted on different physical forms (entire, ground and sieved) of cannabis inflorescences in order to evaluate the impact of sample homogeneity on THC content predictions. Since entire cannabis inflorescences represent the most common types of samples found in both the pharmaceutical and illicit markets, they have been considered priority analytical targets.

View Article and Find Full Text PDF

The analysis of illicit drugs faces many challenges, mainly regarding the production of timely and reliable results and the production of added value from the generated data. It is essential to rethink the way this analysis is operationalised, in order to cope with the trend toward the decentralization of forensic applications. This paper describes the deployment of an ultra-portable near-infrared detector connected to a mobile application.

View Article and Find Full Text PDF