Interleukin-2 (IL2) is a pro-inflammatory cytokine that plays a crucial role in immunity, which is increasingly being used for therapeutic applications. There is growing interest in developing IL2-based therapeutics which do not interact with the alpha subunit of the IL2 receptor (CD25) as this protein is primarily found on immunosuppressive regulatory T cells (T). Screenings of a new DNA-encoded library, comprising 669,240 members, provided a novel series of IL2 ligands, subsequently optimized by medicinal chemistry.
View Article and Find Full Text PDFDNA-encoded chemical libraries (DELs) represent a versatile and powerful technology platform for the discovery of small-molecule ligands to protein targets of biological and pharmaceutical interest. DELs are collections of molecules, individually coupled to distinctive DNA tags serving as amplifiable identification barcodes. Thanks to advances in DNA-compatible reactions, selection methodologies, next-generation sequencing, and data analysis, DEL technology allows the construction and screening of libraries of unprecedented size, which has led to the discovery of highly potent ligands, some of which have progressed to clinical trials.
View Article and Find Full Text PDFDNA-encoded chemical libraries are typically screened against purified protein targets. Recently, cell-based selections with encoded chemical libraries have been described, commonly revealing suboptimal performance due to insufficient recovery of binding molecules. We used carbonic anhydrase IX (CAIX)-expressing tumor cells as a model system to optimize selection procedures with code-specific quantitative polymerase chain reaction (qPCR) as selection readout.
View Article and Find Full Text PDFWe describe the development of OncoFAP, an ultra-high-affinity ligand of fibroblast activation protein (FAP) for targeting applications with pan-tumoral potential. OncoFAP binds to human FAP with affinity in the subnanomolar concentration range and cross-reacts with the murine isoform of the protein. We generated various fluorescent and radiolabeled derivatives of OncoFAP in order to study biodistribution properties and tumor-targeting performance in preclinical models.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2020
DNA-encoded chemical libraries (DECLs) are large compound collections attached to DNA fragments, serving as amplifiable barcodes, which can be screened on target proteins of pharmaceutical interest. In DECL selections, ligands are identified by high-throughput DNA sequencing, by comparing their frequency before and after the affinity capture step. Hits identified using this procedure need to be validated by resynthesis and by performing affinity measurements.
View Article and Find Full Text PDFThe growing importance of DNA-encoded chemical libraries (DECLs) as tools for the discovery of protein binders has sparked an interest for the development of efficient screening methodologies, capable of discriminating between high- and medium-affinity ligands. Here, we present a systematic investigation of selection methodologies, featuring a library displayed on single-stranded DNA, which could be hybridized to a complementary oligonucleotide carrying a diazirine photoreactive group. Model experiments, performed using ligands of different affinity to carbonic anhydrase IX, revealed a recovery of preferential binders up to 10%, which was mainly limited by the highly reactive nature of carbene intermediates generated during the photo-cross-linking process.
View Article and Find Full Text PDFDNA-encoded chemical libraries (DECLs) are increasingly employed in hit discovery toward proteins of pharmaceutical interest. Protected amino acids are the most commonly used building blocks for the construction of DECLs; therefore, the expansion of reaction scope with the subsequent free amine is highly desired. Here, we developed a robust DNA-compatible diazo-transfer reaction using imidazole-1-sulfonyl azide tetrafluoroborate salt converting a wide range of primary amines into their corresponding azides in good to excellent yields.
View Article and Find Full Text PDFDNA-encoded chemical libraries are often used for the discovery of ligands against protein targets of interest. These large collections of DNA-barcoded chemical compounds are typically screened by using affinity capture methodologies followed by PCR amplification and DNA sequencing procedures. However, the performance of individual steps in the selection procedures has been scarcely investigated, so far.
View Article and Find Full Text PDFDNA-encoded combinatorial libraries are increasingly being used as tools for the discovery of small organic binding molecules to proteins of biological or pharmaceutical interest. In the majority of cases, synthetic procedures for the formation of DNA-encoded combinatorial libraries incorporate at least one step of amide bond formation between amino-modified DNA and a carboxylic acid. We investigated reaction conditions and established a methodology by using 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide, 1-hydroxy-7-azabenzotriazole and N,N'-diisopropylethylamine (EDC/HOAt/DIPEA) in combination, which provided conversions greater than 75% for 423/543 (78%) of the carboxylic acids tested.
View Article and Find Full Text PDFThe potential of DNA-encoded combinatorial libraries (DECLs) as tools for hit discovery crucially relies on the availability of methods for their synthesis at acceptable purity and quality. Incomplete reactions in the presence of DNA can noticeably affect the purity of DECLs and methods to selectively remove unreacted oligonucleotide-based starting products would likely enhance the quality of DECL screening results. We describe an approach to selectively remove unreacted oligonucleotide starting products from reaction mixtures and demonstrate its applicability in the context of acylation of amino-modified DNA.
View Article and Find Full Text PDFWe describe the synthesis and screening of a DNA-encoded chemical library containing 76230 compounds. In this library, sets of amines and carboxylic acids are directly linked producing encoded compounds with compact structures and drug-like properties. Affinity screening of this library yielded inhibitors of the potential pharmaceutical target tankyrase 1, a poly(ADP-ribose) polymerase.
View Article and Find Full Text PDFConventional chemotherapeutic drugs do not selectively localize to tumors, causing undesired toxicities to healthy organs, and precluding the escalation to therapeutically active regimens. The selective delivery at sites of disease of potent effector molecules represents a promising strategy for the treatment of cancer and other diseases. High affinity antibodies towards disease-associated antigens are currently the vehicles of choice for the targeted delivery of payloads.
View Article and Find Full Text PDFMethods for the rapid and inexpensive discovery of hit compounds are essential for pharmaceutical research and DNA-encoded chemical libraries represent promising tools for this purpose. We here report on the design and synthesis of DAL-100K, a DNA-encoded chemical library containing 103 200 structurally compact compounds. Affinity screening experiments and DNA-sequencing analysis provided ligands with nanomolar affinities to several proteins, including prostate-specific membrane antigen and tankyrase 1.
View Article and Find Full Text PDFDNA-encoded chemical libraries are collections of small molecules, attached to DNA fragments serving as identification barcodes, which can be screened against multiple protein targets, thus facilitating the drug discovery process. The preparation of large DNA-encoded chemical libraries crucially depends on the availability of robust synthetic methods, which enable the efficient conjugation to oligonucleotides of structurally diverse building blocks, sharing a common reactive group. Reactions of DNA derivatives with amines and/or carboxylic acids are particularly attractive for the synthesis of encoded libraries, in view of the very large number of building blocks that are commercially available.
View Article and Find Full Text PDFAmphiphilic heptapyrenotides (Py(7)) assemble into supramolecular polymers. Here we present a comprehensive spectroscopic study of aggregates and co-aggregates of the non-chiral Py(7) and its mono- or di-substituted nucleotide analogs (Py(7)-N and N-Py(7)-N'). The data show that the formation of supramolecular polymers from oligopyrenotides is highly sensitive to the nature of the attached, chiral auxiliary.
View Article and Find Full Text PDFPolyfluorophores built on a DNA scaffold (ODFs) were synthesized and tested for fluorescence responses to the volatiles from M. tuberculosis, E. coli and P.
View Article and Find Full Text PDFOligodeoxyfluorosides (ODFs) are short DNA-like oligomers in which DNA bases are replaced with fluorophores. A preliminary study reported that some sequences of ODFs were able to respond to a few organic small molecules in the vapor phase, giving a change in fluorescence. Here, we follow up on this finding by investigating a larger range of volatile organic analytes, and a considerably larger set of sensors.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2010
Eu(III) complexes of DNA containing a non-nucleosidic linker, a derivative of 1,10-phenanthroline-2,6-dicarboxamide (Q), are studied with the goal of forming novel lanthanide ion binding sites that are incorporated in the backbone of DNA. One oligonucleotide is short and unstructured (TTTQTTT (QT6)) and the other (5'-AGCTCGGTCAQCGAGAGTGCA-3' (SQ)) is studied both in single-stranded form and in the presence of a partially complementary DNA strand. Luminescence spectroscopy studies show that Eu(III) binds to SQ, QT6, AQB, or QB 1100-, 56-, 23-, or 27-fold more tightly, respectively, than to a simple 1,10-phenanthroline-2,6-dicarboxamide ligand (Q1).
View Article and Find Full Text PDFThe photophysics of free pyrenedicarboxamide (Py-DCA) in solution as well as of single-stranded and double-stranded oligonucleotides (ss and ds ONs) containing 1-7 pyrene building blocks per strand were studied by steady-state and time-resolved fluorescence spectroscopy. It was found that the fluorescence quantum yield Phi(F) of free Py-DCA chromophore in solution is rather high (Phi(F) = 0.44).
View Article and Find Full Text PDFThe self-organization of oligopyrene foldamers is described. Bi- and tri-segmental oligomers composed of nucleotides and non-nucleosidic, achiral pyrene monomers form double-stranded helical structures, as shown by absorbance, fluorescence, and CD spectroscopy. The mixed nature of alternating aromatic and phosphate groups ensures water solubility which, in turn, favors folding of the aromatic units.
View Article and Find Full Text PDFDNA mimics containing non-nucleosidic pyrene building blocks are described. The modified oligomers form stable hybrids, although a slight reduction in hybrid stability is observed in comparison to the unmodified DNA duplex. The nature of the interaction between the pyrene residues in single and double stranded oligomers is analyzed spectroscopically.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2007