Stimuli-responsive microgels with redox and luminescent resonance energy transfer (LRET) properties are reported. Poly(N-isopropylacrylamide) microgels are functionalized simultaneously with two models dyes: a derivative of tris(bipyridine) ruthenium complex and cyanine 5. Both moieties are chosen as a pair of luminophores with a spectral overlap for resonance energy transfer, where the ruthenium complex acts as a donor and the cyanine an acceptor.
View Article and Find Full Text PDFThe aim of this paper is to determine how microgels adsorb at a model oil-water interface and how they adapt their conformation to compression, which gives rise to surface elasticity depending on the microgel packing. The structure of the film is determined by the Langmuir films approach (forced compression) and compared to spontaneous adsorption using the pendant drop method. The behaviour of microgels differs significantly from that of non-deformable particles but resembles that of linear polymers or proteins.
View Article and Find Full Text PDFThis work reports a new evidence of the versatility of soft responsive microgels as stabilizers for Pickering emulsions. The organization of microgels at the oil-water interface is a function of the preparation pathway. The present results show that emulsification energy can be used as a trigger to modify microgel deformation at the oil-water interface and their packing density: high shear rates bring strong flattening of the microgels, whereas low shear rates lead to dense monolayers, where the microgels are laterally compressed.
View Article and Find Full Text PDFThe electrochemistry, photoluminescence and electrogenerated chemiluminescence of thermoresponsive redox microgels were investigated. For the first time, reversible ECL enhancement is demonstrated in stimuli-responsive 100-nm microgel particles. Such an unexpected amplification reached 2 orders of magnitude, and it is intrinsically correlated with the collapse of the microgel particles.
View Article and Find Full Text PDF