Publications by authors named "Florent Peron"

Fluorine substitution can have a profound impact on molecular conformation. Here, we present a detailed conformational analysis of how the 1,3-difluoropropylene motif (-CHF-CH-CHF-) determines the conformational profiles of 1,3-difluoropropane, - and -2,4-difluoropentane, and - and -3,5-difluoroheptane. It is shown that the 1,3-difluoropropylene motif strongly influences alkane chain conformation, with a significant dependence on the polarity of the medium.

View Article and Find Full Text PDF
Article Synopsis
  • A new method was developed to synthesize unique aza-diketopiperazines (aza-DKPs) using a combination of reaction techniques.
  • The process involves modifying bicyclic aza-DKP structures through reactions like click chemistry, N-acylation, and N-alkylation.
  • This approach allows for the efficient creation of a range of original aza-DKPs, enhancing the diversity of aza-heterocyclic compounds.
View Article and Find Full Text PDF

A rapid and atom economical multicomponent synthesis of complex aza-diketopiperazines (aza-DKPs) driven by Rh(i)-catalyzed hydroformylation of alkenylsemicarbazides is described. Combined with catalytic amounts of acid and the presence of nucleophilic species, this unprecedented multicomponent reaction (MCR) enabled the formation of six bonds and a controlled stereocenter from simple substrates. The efficacy of the strategy was demonstrated with a series of various allyl-substituted semicarbazides and nucleophiles leading to the preparation of 3D-shaped bicyclic aza-DKPs.

View Article and Find Full Text PDF

Fluorination is commonly exercised in compound property optimization. However, the influence of fluorination on hydrogen-bond (HB) properties of adjacent functional groups, as well as the HB-accepting capacity of fluorine itself, is still not completely understood. Although the formation of OH⋅⋅⋅F intramolecular HBs (IMHBs) has been established for conformationally restricted fluorohydrins, such interaction in flexible compounds remained questionable.

View Article and Find Full Text PDF

The N-tosylcarboxamide group can direct the room-temperature palladium-catalyzed C-H alkoxylation and halogenation of substituted arenes in a simple and mild procedure. The room-temperature stoichiometric cyclopalladation of N-tosylbenzamide was first studied, and the ability of the palladacycle to react with oxidants to form C-X and C-O bonds under mild conditions was demonstrated. The reaction conditions were then adapted to promote room-temperature ortho-alkoxylations and ortho-halogenations of N-tosylbenzamides using palladium as catalyst.

View Article and Find Full Text PDF

Very high diastereoselectivity can be achieved by 1,3-chelation-controlled allylation of aldehydes that possess a non-chelating α-ether substituent, even if the α-position is a quaternary centre and/or a spiro-epoxide. This reaction was used as a key step in an enantioselective synthesis of the angiogenesis inhibitor luminacin D.

View Article and Find Full Text PDF

The N-tosylcarboxamide group offers the possibility of directing the Pd-catalyzed C-H arylation of arenes providing a new entry to biarylcarboxamides. Moreover, its ability to react according to different reaction conditions including intramolecular reactions makes it a pivotal directing group for a divergent synthesis of biaryl-based compounds.

View Article and Find Full Text PDF