Publications by authors named "Florent Guichard"

We demonstrate that chirped pulse up-conversion (CPU), a method routinely used with systems based on 1-kHz Titanium:Sapphire lasers, can be extended to a repetition rate of 100 kHz with an Ytterbium diode-pumped femtosecond amplifier. Individual mid-infrared spectra can thus be measured directly in the near infrared using a fast CMOS linescan camera. After an appropriate Fourier processing, a spectral resolution of 1.

View Article and Find Full Text PDF

We demonstrate nonlinear temporal compression of a vortex beam by propagation in a gas-filled capillary. Starting from an ytterbium-based laser delivering 700 μJ 640 fs pulses at a 100 kHz repetition rate, the vortex beam is generated using a spiral phase plate and coupled to a capillary where it excites a set of four modes that have an overlap integral of 97% with a Laguerre-Gauss LG mode. Nonlinear propagation of this hybrid, orbital angular momentum (OAM)-carrying mode results in temporal compression down to 74 fs at the output.

View Article and Find Full Text PDF

Positively chirped femtosecond pulses at 1030 nm are wavelength-converted using spontaneous and stimulated Raman scattering in a potassium gadolinium tungstate crystal inserted inside a multipass cell. Recirculation in the cell and the Raman material allows both a high conversion efficiency and good spatial beam quality for the generated Stokes beams. The converted pulses can be compressed to sub-picosecond duration.

View Article and Find Full Text PDF

We report about a setup for carrier-envelope phase (CEP) control and stabilization in passive systems based on difference frequency generation (DFG). The principle of this approach relies on the amplitude to phase modulation transfer in the white-light generation process. A small modulation of the pump laser intensity is used to obtain a DFG output modulated in CEP.

View Article and Find Full Text PDF

We present an efficient and robust scheme to produce energetic sub-15 fs pulses centered at 515 nm with a peak power exceeding 3 GW. Combining efficient second-harmonic generation of a 135 fs, 50 W Yb-doped fiber amplifier with a low-loss capillary-based visible pulse compression stage, we reach an overall efficiency higher than >20. The system is also designed to take advantage of the repetition rate flexibility of the fiber amplifier, leading sub-15 fs pulse generation from 166 to 500 kHz with an average power exceeding the 10 watt level.

View Article and Find Full Text PDF

Starting from a femtosecond ytterbium-doped fiber amplifier, we demonstrate the generation of near Fourier transform-limited high peak power picosecond pulses through spectral compression in a nonlinear solid-state-based multipass cell. Input 260 fs pulses negatively chirped to 2.4 ps are spectrally compressed from 6 nm down to 1.

View Article and Find Full Text PDF

We propose and demonstrate an OPCPA architecture emitting few-cycle pulses at 3070 nm and 1550 nm based on a high-energy femtosecond ytterbium-doped fiber amplifier pump. The short pump pulse duration allows direct seeding by a supercontinuum in the 1.4 - 1.

View Article and Find Full Text PDF

A hybrid-system approach using a low-gain Yb:YAG single crystal booster amplifier behind a state-of-the-art industrial high-power femtosecond fiber system is studied to significantly increase the output pulse energy of the fiber amplifier. With this system, more than 60 W of average power is demonstrated at 100 kHz for pulse duration of 400 fs, corresponding to an energy per pulse of 600 µJ. Reducing the repetition rate, the energy is increased up to 2.

View Article and Find Full Text PDF

A hybrid ytterbium-doped fiber-bulk laser source allowing the generation of 3 ps, 350 μJ, 116 MW peak power Fourier transform-limited pulses at 50 kHz repetition rate and 1030 nm wavelength is described. Pulse duration tunability is provided by an adjustable spectral compression-based seeder system. Energy scaling capabilities of the architecture by use of the divided-pulse amplification method are investigated.

View Article and Find Full Text PDF

We report on the generation of 34 fs and 50 µJ pulses from a high energy fiber amplifier system with nonlinear compression in an air-filled hypocycloid-core Kagome fiber. The unique properties of such fibers allow bridging the gap between solid core fibers-based and hollow capillary-based post-compression setups, thereby operating with pulse energies obtained with current state-of-the-art fiber systems. The overall transmission of the compression setup is over 70%.

View Article and Find Full Text PDF

Active coherent beam combination using a 7-non-coupled core, polarization maintaining, air-clad, Yb-doped fiber is demonstrated as a monolithic and compact power-scaling concept for ultrafast fiber lasers. A microlens array matched to the multicore fiber and an active phase controller composed of a spatial light modulator applying a stochastic parallel gradient descent algorithm are utilized to perform coherent combining in the tiled aperture geometry. The mitigation of nonlinear effects at a pulse energy of 8.

View Article and Find Full Text PDF

We report the measurement of spectral and spatial correlations in supercontinua generated by focusing microjoule pulses from a femtosecond ytterbium-doped fiber amplifier laser in bulk YAG. The measurement is full-bandwidth at a repetition rate of 1 MHz owing to the use of time-stretch dispersive Fourier transform technique. In contrast with fiber-based supercontinuum generation, our results show an excellent stability of the spectral and spatial properties of the output supercontinuum, with an essentially correlated behavior in the 1.

View Article and Find Full Text PDF

We report on the generation of 1.1-mJ, 300-fs pulses at 50 kHz by implementing an amplifier architecture whereby four stretched pulse replicas are created in the temporal and spatial domains, allowing pulse energy scaling by the same factor. The whole spatiotemporal coherent combining geometry is passive, avoiding the need for active electronic stabilization loop systems.

View Article and Find Full Text PDF

We demonstrate spectral coherent beam combining of two femtosecond fiber chirped-pulse amplifiers seeded by a common oscillator. Using active phase stabilization based on an electro-optic phase modulator, an average power of 10 W before compression and a high gain factor of 30 dB are obtained. At this gain value, 130 fs pulses with a spectral width of 19 nm can be generated, highlighting the strong potential of pulse synthesis for the reduction of the minimum duration of ultrashort pulses in fiber chirped-pulse amplifiers.

View Article and Find Full Text PDF

Passive spatial and temporal coherent combining schemes are implemented to scale the output energy of a nonlinear temporal compression setup. By generating 32 replicas of the incident femtosecond pulses, the output of a high-energy fiber chirped-pulse amplifier can be compressed using self-phase modulation in a large-mode-area rod-type fiber at peak-power levels well beyond the self-focusing power. We demonstrate the generation of 71 fs 7.

View Article and Find Full Text PDF

We implement both chirped pulse amplification and divided pulse amplification in the same femtosecond fiber amplifier setup. This scheme allows an equivalent stretched pulse duration of 2.4 ns in a compact tabletop system.

View Article and Find Full Text PDF