tRNA-bound amino acids often need to be identified, for instance, in cases where different amino acids compete for binding to the same tRNA. Here, we present a mass-spectrometry-based protocol to determine the amino acids bound to tRNA by aminoacylation. We detail how to perform the aminoacylation reaction, the preparation of the aminoacyl-tRNA for measurement, and the mass spectrometric analysis.
View Article and Find Full Text PDFThe canonical set of amino acids leads to an exceptionally wide range of protein functionality, nevertheless, this set still exhibits limitations. The incorporation of noncanonical amino acids into proteins can enlarge its functional scope. Although proofreading will counteract the charging of tRNAs with other amino acids than the canonical ones, the translation machinery may still accept noncanonical amino acids as surrogates and incorporate them at the canonically prescribed locations within the protein sequence.
View Article and Find Full Text PDFCell-free transcription-translation systems are a versatile tool to study gene expression, enzymatic reactions and biochemical regulation mechanisms. Because cell-free transcription-translation systems are often derived from cell lysates, many different substances, among them amino acids, are present. However, experiments concerning the incorporation of non-canonical amino acids into proteins require a system with negligible amounts of canonical analogs.
View Article and Find Full Text PDF