Establishing toxicological predictive modeling frameworks for heterogeneous nanomaterials is crucial for rapid environmental and health risk assessment. However, existing structure-toxicity correlation models for such nanomaterials are only based on simple linear regression algorithms that are prone to underfitting the training data. These models rely heavily on experimental and expensive computational quantum mechanical descriptors, which significantly limit their practical use.
View Article and Find Full Text PDFWe synthesized two bichromophoric difluoroboron-β-diketonates (DFB) connected in para and meta positions by using cyclohexane diamine as a chiral bridge (para and meta (R/S)-CyDFB). TD-DFT calculations revealed that the variation in connectivity of the DFB units leads to different spatial arrangements and a chirality inversion of the bichromophoric DFB. Higher g values were obtained in (R/S)-CyDFB connected in para as compared to meta position.
View Article and Find Full Text PDF