This work aimed to produce and characterize cellulose nanofibers obtained from cassava peel with a combination of pre-treatments with acid hydrolysis or TEMPO-mediated oxidation and ultrasonic disintegration. All nanofibers presented nanometric diameter (5-16 nm) and high negative zeta potential values (around -30 mV). Oscillatory rheology showed a gel-like behavior of the aqueous suspensions of nanofibers (1.
View Article and Find Full Text PDFAn in vitro digestibility protocol was used to elucidate the role of different emulsifying polysaccharides particles on the lipid digestion rate of oil-in-water Pickering emulsions. Emulsions stabilized by cellulose crystals (CCrys), cellulose nanofibers (CNFs), chitosan particles and a conventional emulsifier (Tween 80) were evaluated concerning microstructure, droplet size, zeta potential and free fatty acids released during digestion. After gastric step, the high positive charge of chitosan-stabilized emulsions favored the droplets disaggregation resulting in a mild effect of bridging flocculation by particles sharing and displacement of the size curve distribution toward lower size.
View Article and Find Full Text PDFCellulose nanofibers (CNFs) from banana peels was evaluated as promising stabilizer for oil-in-water emulsions. CNFs were treated using ultrasound and high-pressure homogenizer. Changes on the size, crystallinity index and zeta potential of CNFs were associated with the intense effects of cavitation phenomenon and shear forces promoted by mechanical treatments.
View Article and Find Full Text PDFCellulose nanofibers were isolated from banana peel using a combination of chemical and mechanical treatments with different number of passages through the high-pressure homogenizer (0, 3, 5, and 7 passages). New nanocomposites were then prepared from a mixed suspension of banana starch and cellulose nanofibers using the casting method and the effect of the addition of these nanofibers on the properties of the resulting nanocomposites was investigated. The cellulose nanofibers homogeneously dispersed in the starch matrix increased the glass transition temperature, due to the strong intermolecular interactions occurring between the starch and cellulose.
View Article and Find Full Text PDFThis work aimed to obtain and characterize nanofibers from cassava bagasse and peelings, which are waste originating from cassava starch extraction. To isolate the nanofibers, a combination of pre-treatments (alkaline treatment, Q-chelating treatment, bleaching), acid hydrolysis, and a final ultrasonic disintegration step were used. Acidic hydrolysis was conducted at a constant temperature of 60°C; the acid concentration (30, 40, and 50%) and the treatment time (30, 60, and 90min) were varied.
View Article and Find Full Text PDFIn this study, variations in the delignification and bleaching stages, acid hydrolysis and high-pressure homogenization, led to the development of 12 different treatments applied for obtaining nanofibers using fibrous residues arising from the starch extraction process from the achira rhizomes. The treatments were evaluated based on some properties and characteristics of nanofibers such as: morphology and size (by means of transmission electron microscopy), surface charge (by means of zeta potential measurements), crystallinity index (by means of X-ray diffraction analysis) and functional groups (by means of infrared spectroscopy). In general, the nanofibers showed particle diameters between 13.
View Article and Find Full Text PDFFilms forming solutions composed of Amaranth (Amaranthus cruentus) flour (4.0 g/100 mL), stearic acid (5-15 g/100 g of flour), and glycerol (25-35 g/100 g of flour) were prepared by an emulsification process, with varying stirring speed values (6640-13360 rpm). The influence of these parameters (stearic acid and glycerol concentrations and stirring speed) on the water vapor barrier and mechanical properties of films was evaluated using the response surface methodology (RSM).
View Article and Find Full Text PDF