Multi-view architectures using lens arrays can bring interesting features like 3D or multispectral imagery over single aperture cameras. Combined with super-resolution algorithms, multi-view designs are a way to miniaturize cameras while maintaining their resolution. These optical designs can be adapted for thermal infrared imagery and can thus answer the size, weight and power (SWAP) challenge with advanced imagery functions.
View Article and Find Full Text PDFWe present an ultracompact infrared cryogenic camera integrated inside a standard Sofradir's detector dewar cooler assembly (DDCA) whose field of view is equal to 120°. The multichannel optical architecture produces four nonredundant images on a single SCORPIO detector with a pixel pitch of 15 μm. This ultraminiaturized optical system brings a very low additional optical and mechanical mass to be cooled in the DDCA: the cool-down time is comparable to an equivalent DDCA without an imagery function.
View Article and Find Full Text PDFWe present a theoretical study of guided-mode-resonance filters made of two sub-wavelength metallic gratings and a dielectric waveguide, with lateral geometries compatible with the size of infrared focal plane array pixels. Contrary to most of the studies described in the literature, we consider here a focused beam on finite-sized filters, and we investigate the optical properties of a mosaic of 30 μm-long filters. We demonstrate the spectral filtering ability and low crosstalk of such components.
View Article and Find Full Text PDFA new simple and cost-effective method has been developed for the fabrication of both plano-convex and plano-concave lens arrays with potentially important sag heights. The process is based on the use of potassium bromide (KBr) powder. At ambient temperature and under pressure, KBr powder is compressed on a molding die with the desired shape to form a solid lens array.
View Article and Find Full Text PDFWe present a compact infrared cryogenic multichannel camera with a wide field of view equal to 120°. By merging the optics with the detector, the concept is compatible with both cryogenic constraints and wafer-level fabrication. The design strategy of such a camera is described, as well as its fabrication and integration process.
View Article and Find Full Text PDFWe present a optical system with an extended point-spread function (PSF) for the localization of point sources in the visible and IR spectral ranges with a subpixel precision. This compact system involves a random phase mask (RPM) as its unique component. It exhibits original properties, because this RPM is used in a particular regime, called the "filamentation regime," before the speckle region.
View Article and Find Full Text PDFWe present the range of optical architectures for imaging systems based on a single optical component, an aperture stop, and a detector. Thanks to the formalism of third-order Seidel aberrations, several strategies of simplification and miniaturization of optical systems are examined. Figures of merit are also introduced to assess the basic optical properties and performance capabilities of such systems; by this way, we show the necessary trade-off between simplicity, miniaturization, and optical performance.
View Article and Find Full Text PDFWe present a new method to measure the modulation transfer function (MTF) beyond the Nyquist frequency of a multichannel imaging system for which all the channels have parallel optical axes. Such a multichannel optical system produces a set of undersampled subimages. If the subimages contain nonredundant information, high spatial frequencies are folded between low spatial frequencies, leading to the possible extraction of frequencies higher than the Nyquist frequency.
View Article and Find Full Text PDF