Publications by authors named "Florence d'Alche-Buc"

In small molecule identification from tandem mass (MS/MS) spectra, input-output kernel regression (IOKR) currently provides the state-of-the-art combination of fast training and prediction and high identification rates. The IOKR approach can be simply understood as predicting a fingerprint vector from the MS/MS spectrum of the unknown molecule, and solving a pre-image problem to find the molecule with the most similar fingerprint. In this paper, we bring forward the following improvements to the IOKR framework: firstly, we formulate the IOKRreverse model that can be understood as mapping molecular structures into the MS/MS feature space and solving a pre-image problem to find the molecule whose predicted spectrum is the closest to the input MS/MS spectrum.

View Article and Find Full Text PDF

The vascular endothelium is considered as a key cell compartment for the response to ionizing radiation of normal tissues and tumors, and as a promising target to improve the differential effect of radiotherapy in the future. Following radiation exposure, the global endothelial cell response covers a wide range of gene, miRNA, protein and metabolite expression modifications. Changes occur at the transcriptional, translational and post-translational levels and impact cell phenotype as well as the microenvironment by the production and secretion of soluble factors such as reactive oxygen species, chemokines, cytokines and growth factors.

View Article and Find Full Text PDF

Patients follow-up in oncology is generally performed through the acquisition of dynamic sequences of contrast-enhanced images. Estimating parameters of appropriate models of contrast intake diffusion through tissues should help characterizing the tumour physiology. However, several models have been developed and no consensus exists on their clinical use.

View Article and Find Full Text PDF

Motivation: An important problematic of metabolomics is to identify metabolites using tandem mass spectrometry data. Machine learning methods have been proposed recently to solve this problem by predicting molecular fingerprint vectors and matching these fingerprints against existing molecular structure databases. In this work we propose to address the metabolite identification problem using a structured output prediction approach.

View Article and Find Full Text PDF

Computational methods for predicting protein-protein interactions are important tools that can complement high-throughput technologies and guide biologists in designing new laboratory experiments. The proteins and the interactions between them can be described by a network which is characterized by several topological properties. Information about proteins and interactions between them, in combination with knowledge about topological properties of the network, can be used for developing computational methods that can accurately predict unknown protein-protein interactions.

View Article and Find Full Text PDF

In mouse embryonic cells, ligand-activated retinoic acid receptors (RARs) play a key role in inhibiting pluripotency-maintaining genes and activating some major actors of cell differentiation. To investigate the mechanism underlying this dual regulation, we performed joint RAR/RXR ChIP-seq and mRNA-seq time series during the first 48 h of the RA-induced Primitive Endoderm (PrE) differentiation process in F9 embryonal carcinoma (EC) cells. We show here that this dual regulation is associated with RAR/RXR genomic redistribution during the differentiation process.

View Article and Find Full Text PDF

Motivation: Identifying the set of genes differentially expressed along time is an important task in two-sample time course experiments. Furthermore, estimating at which time periods the differential expression is present can provide additional insight into temporal gene functions. The current differential detection methods are designed to detect difference along observation time intervals or on single measurement points, warranting dense measurements along time to characterize the full temporal differential expression patterns.

View Article and Find Full Text PDF

Reconstructing gene regulatory networks from high-throughput measurements represents a key problem in functional genomics. It also represents a canonical learning problem and thus has attracted a lot of attention in both the informatics and the statistical learning literature. Numerous approaches have been proposed, ranging from simple clustering to rather involved dynamic Bayesian network modeling, as well as hybrid ones that combine a number of modeling steps, such as employing ordinary differential equations coupled with genome annotation.

View Article and Find Full Text PDF

Background: Gene regulatory network inference remains a challenging problem in systems biology despite the numerous approaches that have been proposed. When substantial knowledge on a gene regulatory network is already available, supervised network inference is appropriate. Such a method builds a binary classifier able to assign a class (Regulation/No regulation) to an ordered pair of genes.

View Article and Find Full Text PDF

Motivation: Reverse engineering of gene regulatory networks remains a central challenge in computational systems biology, despite recent advances facilitated by benchmark in silico challenges that have aided in calibrating their performance. A number of approaches using either perturbation (knock-out) or wild-type time-series data have appeared in the literature addressing this problem, with the latter using linear temporal models. Nonlinear dynamical models are particularly appropriate for this inference task, given the generation mechanism of the time-series data.

View Article and Find Full Text PDF

Summary: CycSim is a web application dedicated to in silico experiments with genome-scale metabolic models coupled to the exploration of knowledge from BioCyc and KEGG. Specifically, CycSim supports the design of knockout experiments: simulation of growth phenotypes of single or multiple gene deletions mutants on specified media, comparison of these predictions with experimental phenotypes and direct visualization of both on metabolic maps. The web interface is designed for simplicity, putting constraint-based modelling techniques within easier reach of biologists.

View Article and Find Full Text PDF

This supplement contains extended versions of a selected subset of papers presented at the workshop MLSB 2007, Machine Learning in Systems Biology, Evry, France, from September 24 to 25, 2007.

View Article and Find Full Text PDF

Background: Inferring gene regulatory networks from data requires the development of algorithms devoted to structure extraction. When only static data are available, gene interactions may be modelled by a Bayesian Network (BN) that represents the presence of direct interactions from regulators to regulees by conditional probability distributions. We used enhanced evolutionary algorithms to stochastically evolve a set of candidate BN structures and found the model that best fits data without prior knowledge.

View Article and Find Full Text PDF

Motivation: Statistical inference of biological networks such as gene regulatory networks, signaling pathways and metabolic networks can contribute to build a picture of complex interactions that take place in the cell. However, biological systems considered as dynamical, non-linear and generally partially observed processes may be difficult to estimate even if the structure of interactions is given.

Results: Using the same approach as Sitz et al.

View Article and Find Full Text PDF

Background: Elucidating biological networks between proteins appears nowadays as one of the most important challenges in systems biology. Computational approaches to this problem are important to complement high-throughput technologies and to help biologists in designing new experiments. In this work, we focus on the completion of a biological network from various sources of experimental data.

View Article and Find Full Text PDF

This article deals with the identification of gene regulatory networks from experimental data using a statistical machine learning approach. A stochastic model of gene interactions capable of handling missing variables is proposed. It can be described as a dynamic Bayesian network particularly well suited to tackle the stochastic nature of gene regulation and gene expression measurement.

View Article and Find Full Text PDF