Publications by authors named "Florence Y Lee"

Since the initial identification of the novel coronavirus SARS-CoV-2 in December of 2019, researchers have raced to understand its pathogenesis and begun devising vaccine and treatment strategies. An accurate understanding of the body's temporal immune response against SARS-CoV-2 is paramount to successful vaccine development and disease progression monitoring. To provide insight into the antibody response against SARS-CoV-2, plasma samples from 181 PCR-confirmed COVID-19 patients collected at various timepoints post-symptom onset (PSO) were tested for the presence of anti-SARS-CoV-2 IgM and IgG antibodies via lateral flow.

View Article and Find Full Text PDF

Multiple myeloma (MM) remains an incurable disease despite recent therapeutic improvements. The ability to detect and characterize MM circulating tumour cells (CTCs) in peripheral blood provides an alternative to replace or augment invasive bone marrow (BM) biopsies with a simple blood draw, providing real-time, clinically relevant information leading to improved disease management and therapy selection. Here we have developed and qualified an enrichment-free, cell-based immunofluorescence MM CTC assay that utilizes an automated digital pathology algorithm to distinguish MM CTCs from white blood cells (WBCs) on the basis of CD138 and CD45 expression levels, as well as a number of morphological parameters.

View Article and Find Full Text PDF

Sumoylation is generally considered a repressive mark for many transcription factors. However, the in vivo importance of sumoylation for any given substrate remains unclear and is questionable because the extent of sumoylation appears exceedingly low for most substrates. Here, we permanently eliminated SF-1/NR5A1 sumoylation in mice (Sf-1(K119R, K194R, or 2KR)) and found that Sf-1(2KR/2KR) mice failed to phenocopy a simple gain of SF-1 function or show elevated levels of well-established SF-1 target genes.

View Article and Find Full Text PDF

The nuclear receptor, farnesoid X receptor (FXR, NR1H4), is known to regulate cholesterol, bile acid, lipoprotein, and glucose metabolism. In the current study, we provide evidence to support a role for FXR in hepatoprotection from acetaminophen (APAP)-induced toxicity. Pharmacological activation of FXR induces the expression of several genes involved in phase II and phase III xenobiotic metabolism in wild-type, but not Fxr(-/-) mice.

View Article and Find Full Text PDF

The ventromedial hypothalamus (VMH) is a distinct morphological nucleus involved in feeding, fear, thermoregulation, and sexual activity. It is essentially unknown how VMH circuits underlying these innate responses develop, in part because the VMH remains poorly defined at a cellular and molecular level. Specifically, there is a paucity of cell-type-specific genetic markers with which to identify neuronal subgroups and manipulate development and signaling in vivo.

View Article and Find Full Text PDF

Activation of the farnesoid X receptor (FXRalpha) affects genes controlling many pathways, including those involved in bile acid and glucose homeostasis. Here we report that a critical gene involved in cholesterol homeostasis, Insig-2, was induced when mice or cultured cells were treated with FXRalpha agonists or infected with constitutively active FXRalpha. No such induction was observed in agonist-treated FXRalpha-/- mice.

View Article and Find Full Text PDF

The farnesoid X receptor (FXR) is a ligand-activated transcription factor and a member of the nuclear receptor superfamily. In the past six years, remarkable inroads have been made into determining the functional importance of FXR. This receptor has been shown to have crucial roles in controlling bile acid homeostasis, lipoprotein and glucose metabolism, hepatic regeneration, intestinal bacterial growth and the response to hepatotoxins.

View Article and Find Full Text PDF

Objective: Based on the observation that Fxr-/- mice exhibit a proatherogenic lipoprotein profile, we investigated the role of FXR in the development of atherosclerosis.

Methods And Results: Administration of a western diet to Fxr-/- mice or wild-type mice does not result in the development of significant atherosclerotic lesions. Consequently we generated Fxr-/- Ldlr-/- (DKO) mice and compared lesion development with Ldlr-/- mice.

View Article and Find Full Text PDF

Farnesoid X receptor (FXR) plays an important role in maintaining bile acid and cholesterol homeostasis. Here we demonstrate that FXR also regulates glucose metabolism. Activation of FXR by the synthetic agonist GW4064 or hepatic overexpression of constitutively active FXR by adenovirus-mediated gene transfer significantly lowered blood glucose levels in both diabetic db/db and wild-type mice.

View Article and Find Full Text PDF

Expression of the farnesoid X receptor (FXR; NR1H4) is limited to the liver, intestine, kidney, and adrenal gland. However, the role of FXR in the latter two organs is unknown. In the current study, we performed microarray analysis using RNA from H295R cells infected with constitutively active FXR.

View Article and Find Full Text PDF

Alpha-crystallins comprise 35% of soluble proteins in the ocular lens and possess chaperone-like functions. Furthermore, the alphaA subunit (alphaA-crystallin) of alpha crystallin is thought to be "lens-specific" as only very low levels of expression were detected in a few non-lenticular tissues. Here we report that human alphaA-crystallin is expressed in human livers and is regulated by farnesoid X-activated receptor (FXR) in response to FXR agonists.

View Article and Find Full Text PDF

Three genes, fibrinogen-alpha (FBGalpha), -beta, and -gamma, encode proteins that make up the mature FBG protein complex. This complex is secreted from the liver and plays a key role in coagulation in response to vascular disruption. We identified all three FBG genes in a screen designed to isolate genes that are regulated by the farnesoid X receptor (FXR; NR1H4).

View Article and Find Full Text PDF