Metabolic profiling (metabolomics) aims at measuring small molecules (metabolites) in complex samples like blood or urine for human health studies. While biomarker-based assessment often relies on a single molecule, metabolic profiling combines several metabolites to create a more complex and more specific fingerprint of the disease. However, in contrast to genomics, there is no unique metabolomics setup able to measure the entire metabolome.
View Article and Find Full Text PDFIn human health research, metabolic signatures extracted from metabolomics data have a strong added value for stratifying patients and identifying biomarkers. Nevertheless, one of the main challenges is to interpret and relate these lists of discriminant metabolites to pathological mechanisms. This task requires experts to combine their knowledge with information extracted from databases and the scientific literature.
View Article and Find Full Text PDFOver-representation analysis (ORA) is one of the commonest pathway analysis approaches used for the functional interpretation of metabolomics datasets. Despite the widespread use of ORA in metabolomics, the community lacks guidelines detailing its best-practice use. Many factors have a pronounced impact on the results, but to date their effects have received little systematic attention.
View Article and Find Full Text PDFMotivation: Metabolomics studies aim at reporting a metabolic signature (list of metabolites) related to a particular experimental condition. These signatures are instrumental in the identification of biomarkers or classification of individuals, however their biological and physiological interpretation remains a challenge. To support this task, we introduce FORUM: a Knowledge Graph (KG) providing a semantic representation of relations between chemicals and biomedical concepts, built from a federation of life science databases and scientific literature repositories.
View Article and Find Full Text PDFBackground: Metabolic syndrome (MetS), a cluster of factors associated with risks of developing cardiovascular diseases, is a public health concern because of its growing prevalence. Considering the combination of concomitant components, their development and severity, MetS phenotypes are largely heterogeneous, inducing disparity in diagnosis.
Methods: A case/control study was designed within the NuAge longitudinal cohort on aging.
Introduction: To interpret metabolomic and lipidomic profiles, it is necessary to identify the metabolic reactions that connect the measured molecules. This can be achieved by putting them in the context of genome-scale metabolic network reconstructions. However, mapping experimentally measured molecules onto metabolic networks is challenging due to differences in identifiers and level of annotation between data and metabolic networks, especially for lipids.
View Article and Find Full Text PDFBeing able to explore the metabolism of broad metabolizing cells is of critical importance in many research fields. This article presents an original modeling solution combining metabolic network and omics data to identify modulated metabolic pathways and changes in metabolic functions occurring during differentiation of a human hepatic cell line (HepaRG). Our results confirm the activation of hepato-specific functionalities and newly evidence modulation of other metabolic pathways, which could not be evidenced from transcriptomic data alone.
View Article and Find Full Text PDFMotivation: Metabolomics has shown great potential to improve the understanding of complex diseases, potentially leading to therapeutic target identification. However, no single analytical method allows monitoring all metabolites in a sample, resulting in incomplete metabolic fingerprints. This incompleteness constitutes a stumbling block to interpretation, raising the need for methods that can enrich those fingerprints.
View Article and Find Full Text PDFMetabolism of an organism is composed of hundreds to thousands of interconnected biochemical reactions responding to environmental or genetic constraints. This metabolic network provides a rich knowledge to contextualize omics data and to elaborate hypotheses on metabolic modulations. Nevertheless, performing this kind of integrative analysis is challenging for end users with not sufficiently advanced computer skills since it requires the use of various tools and web servers.
View Article and Find Full Text PDFSummary: MetExploreViz is an open source web component that can be easily embedded in any web site. It provides features dedicated to the visualization of metabolic networks and pathways and thus offers a flexible solution to analyse omics data in a biochemical context.
Availability And Implementation: Documentation and link to GIT code repository (GPL 3.
This article describes a generic programmatic method for mapping chemical compound libraries on organism-specific metabolic networks from various databases (KEGG, BioCyc) and flat file formats (SBML and Matlab files). We show how this pipeline was successfully applied to decipher the coverage of chemical libraries set up by two metabolomics facilities MetaboHub (French National infrastructure for metabolomics and fluxomics) and Glasgow Polyomics (GP) on the metabolic networks available in the MetExplore web server. The present generic protocol is designed to formalize and reduce the volume of information transfer between the library and the network database.
View Article and Find Full Text PDFAlong with the well-established effects on fertility and fecundity, perinatal exposure to endocrine disrupting chemicals, and notably to xeno-estrogens, is strongly suspected of modulating general metabolism. The metabolism of a perinatally exposed individual may be durably altered leading to a higher susceptibility of developing metabolic disorders such as obesity and diabetes; however, experimental designs involving the long term study of these dynamic changes in the metabolome raise novel challenges. 1H-NMR-based metabolomics was applied to study the effects of bisphenol-A (BPA, 0; 0.
View Article and Find Full Text PDFObjectives: The authors performed a meta-analysis of case-control and cohort studies to clarify the possible relationship between exposure to pesticides and childhood cancers.
Methods: Two cohort and 38 case-control studies were selected for the first meta-analysis. After evaluating homogeneity among studies using the Cochran Q test, the authors calculated a pooled meta-OR stratified on each cancer site.
High-throughput metabolomic experiments aim at identifying and ultimately quantifying all metabolites present in biological systems. The metabolites are interconnected through metabolic reactions, generally grouped into metabolic pathways. Classical metabolic maps provide a relational context to help interpret metabolomics experiments and a wide range of tools have been developed to help place metabolites within metabolic pathways.
View Article and Find Full Text PDF