PRDM9 is a PR domain containing protein which trimethylates histone 3 on lysine 4 and 36. Its normal expression is restricted to germ cells and attenuation of its activity results in altered meiotic gene transcription, impairment of double-stranded breaks and pairing between homologous chromosomes. There is growing evidence for a role of aberrant expression of PRDM9 in oncogenesis and genome instability.
View Article and Find Full Text PDFDeregulated expression of the MYC transcription factor occurs in most human cancers and correlates with high proliferation, reprogrammed cellular metabolism and poor prognosis. Overexpressed MYC binds to virtually all active promoters within a cell, although with different binding affinities, and modulates the expression of distinct subsets of genes. However, the critical effectors of MYC in tumorigenesis remain largely unknown.
View Article and Find Full Text PDFUnlabelled: In this study, carboxylic acid functionalized single walled carbon nanotubes (f-SWCNT-COOH) was shown to support the viability and ex vivo expansion of freeze-thawed, non-enriched hematopoietic stem and progenitor cells (HSPC) in human umbilical cord blood-mononucleated cells (UCB-MNC). Our in vitro experiments showed that f-SWCNT-COOH increased the viability of the CD45(+) cells even without cytokine stimulation. It also reduced mitochondrial superoxides and caspase activity in CD45(+) cells.
View Article and Find Full Text PDFBackground Aims: Double cord blood transplantation (DCBT) may shorten neutrophil and platelet recovery times compared with standard umbilical cord blood transplantation. However, DCBT may be associated with a higher incidence of graft versus host disease (GVHD). In this study, we explored the effect of ex vivo expansion of a single cord blood unit (CBU) in a DCBT setting on GVHD and engraftment.
View Article and Find Full Text PDFBackground Aims: Mesenchymal stromal cells (MSC) have been observed to participate in tissue repair and to have growth-promoting effects on ex vivo co-culture with other stem cells.
Methods: In order to evaluate the mechanism of MSC support on ex vivo cultures, we performed co-culture of MSC with umbilical cord blood (UCB) mononuclear cells (MNC) (UCB-MNC).
Results: Significant enhancement in cell growth correlating with cell viability was noted with MSC co-culture (defined by double-negative staining for Annexin-V and 7-AAD; P < 0.
Ex vivo expansion of cord blood (CB) hematopoietic stem cells and cotransplantation of 2 CB units (CBUs) could enhance the applicability of CB transplantation in adult patients. We report an immunodeficient mouse model for cotransplantation of ex vivo expanded and unexpanded human CB, showing enhanced CB engraftment and provide proof of concept for this transplantation strategy as a means of overcoming the limiting cell numbers in each CBU. CBUs were expanded in serum-free medium supplemented with stem cell factor, Flt-3 ligand, thrombopoietin, and insulin growth factor binding protein-2 together with mesenchymal stromal cell coculture.
View Article and Find Full Text PDF