Publications by authors named "Florence Oury-Donat"

Cannabinoid CB2 PET tracers are considered as a promising alternative to PBR/TSPO tracers for the in-vivo imaging of neuroinflammation. We describe here the synthesis and characterization of compound 3, a new potent and brain penetrating CB2 ligand based on an original triazine template. The PET tracer [(18)F]-dideutero-3 was prepared in a three steps radiosynthesis, and demonstrated significant uptake in rhesus macaque and baboon brain with a maximum SUV of about 0.

View Article and Find Full Text PDF

This study investigated the effects of rimonabant (SR141716), an antagonist of the cannabinoid receptor type 1 (CB1), on obesity-associated hepatic steatosis and related features of metabolic syndrome: inflammation (elevated plasma levels of tumor necrosis factor alpha [TNFalpha]), dyslipidemia, and reduced plasma levels of adiponectin. We report that oral treatment of obese (fa/fa) rats with rimonabant (30 mg/kg) daily for 8 weeks abolished hepatic steatosis. This treatment reduced hepatomegaly, reduced elevation of plasma levels of enzyme markers of hepatic damage (alanine aminotransferase, gamma glutamyltransferase, and alkaline phosphatase) and decreased the high level of local hepatic TNFalpha currently associated with steatohepatitis.

View Article and Find Full Text PDF

In this paper, we report on the pharmacological and functional profile of SSR180711 (1,4-Diazabicyclo[3.2.2]nonane-4-carboxylic acid, 4-bromophenyl ester), a new selective alpha7 acetylcholine nicotinic receptor (n-AChRs) partial agonist.

View Article and Find Full Text PDF

Adipocyte cell proliferation is an important process in body fat mass development in obesity. Adiponectin or Acrp30 is an adipocytokine exclusively expressed and secreted by adipose tissue that regulates lipid and glucose metabolism and plays a key role in body weight regulation and homeostasis. Adiponectin mRNA expression in adipose tissue and plasma level of adiponectin are decreased in obesity and type 2 diabetes.

View Article and Find Full Text PDF
Article Synopsis
  • A new compound called SSR504734 helps increase levels of a chemical called glycine in the brain, which might help with treating symptoms of schizophrenia.
  • Schizophrenia-like symptoms can be caused when a specific brain connection (glutamatergic transmission) is impaired, and SSR504734 works by blocking a protein that usually keeps glycine levels low.
  • In experiments, SSR504734 showed it could improve brain activity and behaviors in mice and rats that are models for schizophrenia, suggesting it could be a good candidate for treatment.
View Article and Find Full Text PDF

The biochemical and pharmacological properties of a novel antagonist of the tachykinin neurokinin 1 (NK1) receptor, SSR240600 [(R)-2-(1-[2-[4-[2-[3,5-bis(trifluoromethyl)phenyl]acetyl]-2-(3,4-dichlorophenyl)-2-morpholinyl]ethyl]-4-piperidinyl)-2-methylpropanamide], were evaluated. SSR240600 inhibited the binding of radioactive substance P to tachykinin NK1 receptors in human lymphoblastic IM9 cells (K(i) = 0.0061 nM), human astrocytoma U373MG cells (K(i) = 0.

View Article and Find Full Text PDF

A protein associated with the peripheral-type benzodiazepine receptor (PRAX-1) has recently been cloned, but its regional distribution in the central nervous system and its function remain to be clarified. In situ hybridization was carried out to localize PRAX-1 mRNA in the rat brain and revealed a high expression of the transcript in limbic structures such as the CA1 region of the hippocampus, as well as the dentate gyrus, septum, amygdala, and the islands of Calleja. A dense hybridization signal was also observed in the nucleus accumbens, caudate nucleus, olfactory tubercle, pineal gland, and cerebellar cortex.

View Article and Find Full Text PDF

SSR 146977 is a potent and selective antagonist of the tachykinin NK3 receptor. In Chinese hamster ovary cells expressing the human tachykinin NK3 receptor, SSR 146977 inhibited the binding of radioactive neurokinin B to NK3 receptors (Ki = 0.26 nM), senktide (10 nM) induced inositol monophosphate formation (IC50 = 7.

View Article and Find Full Text PDF