Int J Environ Res Public Health
February 2023
Background: Around 500/100,000 Canadians experience a traumatic brain injury (TBI) resulting in long-term disabilities and premature death. Physiotherapy is known to positively impact the prognosis of young adults following a TBI.
Objective: This is a scoping review that aimed to identify research topics in physiotherapy interventions for seniors after a TBI, describe potential knowledge gaps, and uncover needs for future research.
Importance: A head computed tomography (CT) with positive results for acute intracranial hemorrhage is the gold-standard diagnostic biomarker for acute traumatic brain injury (TBI). In moderate to severe TBI (Glasgow Coma Scale [GCS] scores 3-12), some CT features have been shown to be associated with outcomes. In mild TBI (mTBI; GCS scores 13-15), distribution and co-occurrence of pathological CT features and their prognostic importance are not well understood.
View Article and Find Full Text PDFImportance: Knowledge of differences in mild traumatic brain injury (mTBI) recovery by sex and age may inform individualized treatment of these patients.
Objective: To identify sex-related differences in symptom recovery from mTBI; secondarily, to explore age differences within women, who demonstrate poorer outcomes after TBI.
Design, Setting, And Participants: The prospective cohort study Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) recruited 2000 patients with mTBI from February 26, 2014, to July 3, 2018, and 299 patients with orthopedic trauma (who served as controls) from January 26, 2016, to July 27, 2018.
Importance: Most traumatic brain injuries (TBIs) are classified as mild (mTBI) based on admission Glasgow Coma Scale (GCS) scores of 13 to 15. The prevalence of persistent functional limitations for these patients is unclear.
Objectives: To characterize the natural history of recovery of daily function following mTBI vs peripheral orthopedic traumatic injury in the first 12 months postinjury using data from the Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study, and, using clinical computed tomographic (CT) scans, examine whether the presence (CT+) or absence (CT-) of acute intracranial findings in the mTBI group was associated with outcomes.
Importance: Traumatic brain injury (TBI) has been associated with adverse mental health outcomes, such as posttraumatic stress disorder (PTSD) and major depressive disorder (MDD), but little is known about factors that modify risk for these psychiatric sequelae, particularly in the civilian sector.
Objective: To ascertain prevalence of and risk factors for PTSD and MDD among patients evaluated in the emergency department for mild TBI (mTBI).
Design, Setting, And Participants: Prospective longitudinal cohort study (February 2014 to May 2018).
Importance: Mild traumatic brain injury (mTBI) affects millions of Americans each year. Lack of consistent clinical practice raises concern that many patients with mTBI may not receive adequate follow-up care.
Objective: To characterize the provision of follow-up care to patients with mTBI during the first 3 months after injury.
The potential toxic effects of two types of copper(II) oxide (CuO) nanoparticles (NPs) with different specific surface areas, different shapes (rod or spheric), different sizes as raw materials and similar hydrodynamic diameter in suspension were studied on human hepatocarcinoma HepG2 cells. Both CuO NPs were shown to be able to enter into HepG2 cells and induce cellular toxicity by generating reactive oxygen species. CuO NPs increased the abundance of several transcripts coding for pro-inflammatory interleukins and chemokines.
View Article and Find Full Text PDFThe potential toxic effects of copper oxide (CuO) nanoparticles (NPs) were studied on differentiated Caco-2 cell monolayers, a classical in vitro model of human small intestine epithelium. Two types of CuO NPs, with different specific surface area, different sizes as raw material but the same hydrodynamic diameter in suspension, differentially disturbed the monolayer integrity, were cytotoxic and triggered an increase of the abundance of several transcripts coding for pro-inflammatory cytokines and chemokines. Specific surface area was not a major variable explaining the increased toxicity when intestinal epithelium is exposed to rod-shaped CuO NPs, compared with spherical CuO NPs.
View Article and Find Full Text PDFWe tested whether multi-walled carbon nanotubes (MWCNTs) induce oxidative stress and a pro-inflammatory response in human N-hTERT telomerase-immortalized keratinocytes, in human SZ95 SV-40 immortalized sebocytes and in in vitro reconstructed epidermises. MWCNTS were tested in various dispersion states, from raw and agglomerated particles to isolated entities obtained by sonication in the presence of dispersive agents (hydroxypropylcellulose and Pluronic F108). It was observed that: (a) Contrary to individualized MWCNTs, agglomerated particles prepared by suspension into pure water increased the intracellular levels of reactive oxygen species as well as the expression and secretion of interleukin-8 in N-hTERT cells; (b) the inflammatory signature of MWCNTs in N-hTERT cells, drawn by transcriptomic analysis with low-density microfluidic cards, included various other cytokines such as interleukin-6 or C-C motif ligand 3; (c) the pro-inflammatory effects of MWCNTs, as assessed by interleukin-8 transcript level and protein release, were not observed in SZ95 cells; and (d) the secretion of interleukins-1α and -8 from in vitro reconstructed epidermal tissues, used as specific markers for skin irritation and sensitization, was unaffected in presence of MWCNTs, confirming that the cornified layer is an efficient barrier against MWCNTs.
View Article and Find Full Text PDFThe effects of multi-walled carbon nanotubes were investigated in SZ95 sebocytes, IHK keratinocytes and reconstructed human epidermises. Carbon nanotubes were subjected to dispersion protocols leading to different agglomeration states. Toxicological methods were chosen and adapted in order to ensure compatibility with nanotubes.
View Article and Find Full Text PDFBackground And Aims: Although conservation biology has long focused on population dynamics and genetics, phenotypic plasticity is likely to play a significant role in population viability. Here, an investigation is made into the relative contribution of genetic diversity and phenotypic plasticity to the phenotypic variation in natural populations of Ranunculus nodiflorus, a rare annual plant inhabiting temporary puddles in the Fontainebleau forest (Paris region, France) and exhibiting metapopulation dynamics.
Methods: The genetic diversity and phenotypic plasticity of quantitative traits (morphological and fitness components) were measured in five populations, using a combination of field measurements, common garden experiments and genotyping at microsatellite loci.
Here, we explore the role of habitat spatial structure in the maintenance of metapopulations of Ranunculus nodiflorus. This rare species grows in puddles that can be connected occasionally by flooded corridors. We monitored five locations in the Fontainebleau forest, France, since 2002 and recorded the presence of corridors among puddles and evaluated their impact on puddle demography and plant fitness.
View Article and Find Full Text PDF