Front Cell Infect Microbiol
August 2022
Patients with diabetes display a progressive decay in the physiological counter-regulatory response to hypoglycemia, resulting in hypoglycemia unawareness. The mechanism through which the brain adapts to hypoglycemia may involve brain glycogen. We tested the hypothesis that brain glycogen supercompensation following hypoglycemia depends on blood glucose levels during recovery.
View Article and Find Full Text PDFThe high molecular weight and low concentration of brain glycogen render its noninvasive quantification challenging. Therefore, the precision increase of the quantification by localized (13) C MR at 9.4 to 14.
View Article and Find Full Text PDFBrain glutamine synthetase (GS) is an integral part of the glutamate-glutamine cycle and occurs in the glial compartment. In vivo Magnetic Resonance Spectroscopy (MRS) allows noninvasive measurements of the concentrations and synthesis rates of metabolites. (15)N MRS is an alternative approach to (13)C MRS.
View Article and Find Full Text PDFStudy Objectives: The main energy reserve of the brain is glycogen, which is almost exclusively localized in astrocytes. We previously reported that cerebral expression of certain genes related to glycogen metabolism changed following instrumental sleep deprivation in mice. Here, we extended our investigations to another set of genes related to glycogen and glucose metabolism.
View Article and Find Full Text PDFWe have recently shown that at isotopic steady state (13)C NMR can provide a direct measurement of glycogen concentration changes, but that the turnover of glycogen was not accessible with this protocol. The aim of the present study was to design, implement and apply a novel dual-tracer infusion protocol to simultaneously measure glycogen concentration and turnover. After reaching isotopic steady state for glycogen C1 using [1-(13)C] glucose administration, [1,6-(13)C(2)] glucose was infused such that isotopic steady state was maintained at the C1 position, but the C6 position reflected (13)C label incorporation.
View Article and Find Full Text PDFGlucose supply from blood to brain occurs through facilitative transporter proteins. A near linear relation between brain and plasma glucose has been experimentally determined and described by a reversible model of enzyme kinetics. A conformational four-state exchange model accounting for trans-acceleration and asymmetry of the carrier was included in a recently developed multi-compartmental model of glucose transport.
View Article and Find Full Text PDFAlthough glycogen (Glyc) is the main carbohydrate storage component, the role of Glyc in the brain during prolonged wakefulness is not clear. The aim of this study was to determine brain Glyc concentration ([]) and turnover time (tau) in euglycemic conscious and undisturbed rats, compared to rats maintained awake for 5h. To measure the metabolism of [1-(13)C]-labeled Glc into Glyc, 23 rats received a [1-(13)C]-labeled Glc solution as drink (10% weight per volume in tap water) ad libitum as their sole source of exogenous carbon for a "labeling period" of either 5h (n=13), 24h (n=5) or 48 h (n=5).
View Article and Find Full Text PDFBackground: Reports of able-bodied participants with the persisting desire for limb amputation raise legal and ethical questions that are partly due to insufficient empirical knowledge about the condition. Here, we searched for potential neurological mechanisms in participants with desire for limb amputation in order to help develop adequate nosological classifications, diagnosis, and treatment.
Methods: Semi-structured interviews were carried out with 20 participants who self-identified themselves as able-bodied individuals desiring amputation of a limb.
Despite obvious improvements in spectral resolution at high magnetic field, the detection of 13C labeling by 1H-[13C] NMR spectroscopy remains hampered by spectral overlap, such as in the spectral region of 1H resonances bound to C3 of glutamate (Glu) and glutamine (Gln), and C6 of N-acetylaspartate (NAA). The aim of this study was to develop, implement, and apply a novel 1H-[13C] NMR spectroscopic editing scheme, dubbed "selective Resonance suppression by Adiabatic Carbon Editing and Decoupling single-voxel STimulated Echo Acquisition Mode" (RACED-STEAM). The sequence is based on the application of two asymmetric narrow-transition-band adiabatic RF inversion pulses at the resonance frequency of the 13C coupled to the protons that need to be suppressed during the mixing time (TM) period, alternating the inversion band downfield and upfield from the 13C resonance on odd and even scans, respectively, thus suppressing the detection of 1H resonances bound to 13C within the transition band of the inversion pulse.
View Article and Find Full Text PDFThe only currently available method to measure brain glycogen in vivo is 13C NMR spectroscopy. Incorporation of 13C-labeled glucose (Glc) is necessary to allow glycogen measurement, but might be affected by turnover changes. Our aim was to measure glycogen absolute concentration in the rat brain by eliminating label turnover as variable.
View Article and Find Full Text PDFThe relaxivity of commercially available gadolinium (Gd)-based contrast agents was studied for X-nuclei resonances with long intrinsic relaxation times ranging from 6 s to several hundred seconds. Omniscan in pure 13C formic acid had a relaxivity of 2.9 mM(-1) s(-1), whereas its relaxivity on glutamate C1 and C5 in aqueous solution was approximately 0.
View Article and Find Full Text PDFWith the use of localized 13C MRS in conjunction with [1-(13)C]-D-glucose infusion, it is possible to study brain glycogen metabolism in vivo. The purpose of this study was to validate in vivo 13C MRS measurements by comparing them with results from a standard biochemical assay. To increase the [1-(13)C] glycogen concentration, 11 rats were subjected to an episode of acute hypoglycemia followed by a mild hyperglycemic recovery period during which [1-(13)C]-D-glucose was infused.
View Article and Find Full Text PDFAll (13)C NMR studies of brain glycogen to date relied on observing the incorporation of (13)C label into glycogen, and thus interpretation was potentially affected by changes in (13)C label turnover rates. The goal of this study was to quantify total brain glycogen concentration under conditions of hypoglycemia or normoglycemia using biochemical methods. Rats were sacrificed using a focused microwave fixation device.
View Article and Find Full Text PDFWe have previously shown that labelling intensities for synaptic proteins vary strongly among synaptic boutons. Here we addressed the questions as to whether there are heterogeneous levels of integral membrane synaptic vesicle proteins at distinct active release sites of single neurons and if these sites possess the ultrastructural features of synapses. By double-immunostaining with specific antibodies against synaptophysin, synaptotagmin I, VAMP1 and VAMP2, we identified different relative levels of these integral membrane proteins of synaptic vesicles in comparison to boutons of the same rat cortical neuron.
View Article and Find Full Text PDFSince individual synapses of the same neuron may have different molecular composition, an important question in neurobiology is how the properties of individual synapses are established and maintained. Recent technical advances allow assay of activity at individual synapses and investigation of the relationship between function and molecular composition at the synapse.
View Article and Find Full Text PDF