The mechanisms by which early microbial colonizers of the neonate influence gut development are poorly understood. Bacterial bile salt hydrolase (BSH) acts as a putative colonization factor that influences bile acid signatures and microbe-host signaling pathways and we considered whether this activity can influence infant gut development. analysis of the human neonatal gut metagenome confirmed that BSH enzyme sequences are present as early as one day postpartum.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
April 2022
This review aims to describe and compare porcine models of metabolic syndrome. This syndrome and its associated secondary comorbidities are set to become the greatest challenge to healthcare providers and policy makers in the coming century. However, an incomplete understanding of the pathogenesis has left significant knowledge gaps in terms of efficacious therapeutics.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
March 2020
Metabolic syndrome (MetS) is a composite of cardiometabolic risk factors, including obesity, dyslipidemia, hypertension, and insulin resistance, with a range of secondary sequelae such as nonalcoholic fatty liver disease and diastolic heart failure. This syndrome has been identified as one of the greatest global health challenges of the 21st century. Herein, we examine whether a porcine model of diet- and mineralocorticoid-induced MetS closely mimics the cardiovascular, metabolic, gut microbiota, and functional metataxonomic phenotype observed in human studies.
View Article and Find Full Text PDFAdministration of the mixed opioid agonist-antagonist butorphanol tartrate (BT) has been shown to robustly increase food intake in rodent models utilizing adult and young animals. BT at orexigenic doses increases c-Fos-immunoreactivity (IR) in brain areas associated with feeding for energy as well as for reward, including the paraventricular nucleus of the hypothalamus, central nucleus of the amygdala and nucleus of the solitary tract. Interestingly, aged rats given standard chow show a diminished feeding response to BT.
View Article and Find Full Text PDFBackground: Obesity is a growing global concern with strong associations with cardiovascular disease, cancer and type-2 diabetes. Although various genome-wide association studies have identified more than 40 genes associated with obesity, these genes cannot fully explain the heritability of obesity, suggesting there may be other contributing factors, including epigenetic effects.
Results: We performed genome wide DNA methylation profiling comparing normal-weight and obese 9-13 year old children to investigate possible epigenetic changes correlated with obesity.
Centrally acting oxytocin (OT) inhibits feeding. Recent evidence suggests a link between OT and control of carbohydrate and saccharin intake, but it is unclear whether OT affects appetite for only carbohydrates, especially sweet ones, or sweet tastants irrespective of their carbohydrate content. Therefore, a blood-brain barrier penetrant OT receptor antagonist, L-368,899, was administered in mice and intake of liquid diets containing carbohydrates sucrose, glucose, fructose, polycose, or cornstarch (CS) or the noncarbohydrate, noncaloric sweetener saccharin was studied in episodic intake paradigms: one in which only one tastant was available and the other in which a choice between a carbohydrate (sucrose, glucose, or fructose) and saccharin was provided.
View Article and Find Full Text PDF