Publications by authors named "Florence K A Gregson"

Biomass burning organic aerosol (BBOA) is a major contributor to organic aerosol in the atmosphere. The impacts of BBOA on climate and health depend strongly upon their physicochemical properties, including viscosity and phase behavior (number and types of phases); these properties are not yet fully characterized. We collected BBOA field samples during the 2021 British Columbia wildfire season to constrain the viscosity and phase behavior at a range of relative humidities and compared them to previous studies on BBOA.

View Article and Find Full Text PDF

Aerosols transform between physical phases, as they respond to variations in environmental conditions. There are many industries that depend on these dynamic processes of crystallization and dissolution. Here, a single particle technique (an electrodynamic balance) is used to explore the crystallization and dissolution dynamics of a model system, sodium chloride.

View Article and Find Full Text PDF

Smoke particles generated by burning biomass consist mainly of organic aerosol termed biomass burning organic aerosol (BBOA). BBOA influences the climate by scattering and absorbing solar radiation or acting as nuclei for cloud formation. The viscosity and the phase behavior (i.

View Article and Find Full Text PDF

Introduction: continuous positive airway pressure (CPAP) and high-flow nasal oxygen (HFNO) provide enhanced oxygen delivery and respiratory support for patients with severe COVID-19. CPAP and HFNO are currently designated as aerosol-generating procedures despite limited high-quality experimental data. We aimed to characterise aerosol emission from HFNO and CPAP and compare with breathing, speaking and coughing.

View Article and Find Full Text PDF

Pulmonary function tests are fundamental to the diagnosis and monitoring of respiratory diseases. There is uncertainty around whether potentially infectious aerosols are produced during testing and there are limited data on mitigation strategies to reduce risk to staff. Healthy volunteers and patients with lung disease underwent standardised spirometry, peak flow and FE assessments.

View Article and Find Full Text PDF

The formation of trileucine-containing spray-dried microparticles intended for pulmonary delivery was studied in depth. A single-particle method was employed to study the shell formation characteristics of trileucine in the presence of trehalose as a glass former, and an empirical correlation was proposed to predict the instance of shell formation. A droplet chain instrument was used to produce and collect monodisperse particles to examine morphology and calculate particle density for different levels of trileucine.

View Article and Find Full Text PDF

Objective: To determine if oesophago-gastro-duodenoscopy (OGD) generates increased levels of aerosol in conscious patients and identify the source events.

Design: A prospective, environmental aerosol monitoring study, undertaken in an ultraclean environment, on patients undergoing OGD. Sampling was performed 20 cm away from the patient's mouth using an optical particle sizer.

View Article and Find Full Text PDF

Aerosols and droplets from expiratory events play an integral role in transmitting pathogens such as SARS-CoV-2 from an infected individual to a susceptible host. However, there remain significant uncertainties in our understanding of the aerosol droplet microphysics occurring during drying and sedimentation and the effect on the sedimentation outcomes. Here, we apply a new treatment for the microphysical behavior of respiratory fluid droplets to a droplet evaporation/sedimentation model and assess the impact on sedimentation distance, time scale, and particle phase.

View Article and Find Full Text PDF

The particle formation of L-leucine, a dispersibility-enhancing amino acid used in the spray drying of inhalable pharmaceutical aerosols, was extensively studied using three experimental methods, and the results were interpreted with the aid of theory. A comparative-kinetics electrodynamic balance was used to study the shell formation behavior in single evaporating microdroplets containing leucine and trehalose. Different concentration thresholds of solidification and shell formation were determined for trehalose and leucine, which were then used in the particle formation model to predict the properties of spray-dried particles.

View Article and Find Full Text PDF

Industrial processes such as spray drying of pharmaceutical and food products often involve the drying of aerosol droplets containing colloidal suspensions into powdered microparticles of desired properties. The morphology and surface properties of the final dry products/microparticles obtained after the drying process are strongly influenced by the parameters of the initial aerosol droplet composition and the drying conditions. In particular, the final dry microparticle morphology can be dependent on the dimensionless Péclet number (), which expresses the relative competition between the diffusion of the dispersed particles within the droplet and the rate of solvent loss via evaporation.

View Article and Find Full Text PDF

A quantitative understanding of the evaporative drying kinetics and nucleation rates of aqueous based aerosol droplets is important for a wide range of applications, from atmospheric aerosols to industrial processes such as spray drying. Here, we introduce a numerical model for interpreting measurements of the evaporation rate and phase change of drying free droplets made using a single particle approach. We explore the evaporation of aqueous sodium chloride and sodium nitrate solution droplets.

View Article and Find Full Text PDF

Purpose: Evaporation and particle formation from multi-solvent microdroplets containing solid excipients pertaining to spray-drying of therapeutic agents intended for lung delivery were studied. Various water and ethanol co-solvent systems containing a variety of actives and excipients (beclomethasone, budesonide, leucine, and trehalose) were considered.

Methods: Numerical methods were used to predict the droplet evaporation rates and internal solute transfers, and their results verified and compared with results from two separate experimental setups.

View Article and Find Full Text PDF