Publications by authors named "Florence Hantraye"

Article Synopsis
  • Understanding genetic interactions is crucial for linking genotype to phenotype, but measuring these interactions accurately is a significant challenge.
  • Researchers developed a novel method to examine these interactions at a genomic scale using yeast, conducting 41 genome-wide screens.
  • The study identified 140,000 double deletion strains and found that while some interactions led to synthetic growth defects, most revealed weak epistatic effects that contributed to meaningful patterns among functionally related genes.
View Article and Find Full Text PDF

We have screened the genome of Saccharomyces cerevisiae for fragments that confer a growth-retardation phenotype when overexpressed in a multicopy plasmid with a tetracycline-regulatable (Tet-off) promoter. We selected 714 such fragments with a mean size of 700 base-pairs out of around 84,000 clones tested. These include 493 in-frame open reading frame fragments corresponding to 454 distinct genes (of which 91 are of unknown function), and 162 out-of-frame, antisense and intergenic genomic fragments, representing the largest collection of toxic inserts published so far in yeast.

View Article and Find Full Text PDF

Identifying the mechanisms of eukaryotic genome evolution by comparative genomics is often complicated by the multiplicity of events that have taken place throughout the history of individual lineages, leaving only distorted and superimposed traces in the genome of each living organism. The hemiascomycete yeasts, with their compact genomes, similar lifestyle and distinct sexual and physiological properties, provide a unique opportunity to explore such mechanisms. We present here the complete, assembled genome sequences of four yeast species, selected to represent a broad evolutionary range within a single eukaryotic phylum, that after analysis proved to be molecularly as diverse as the entire phylum of chordates.

View Article and Find Full Text PDF