Polysaccharide analysis using carbohydrate gel electrophoresis (PACE) relies on derivatization of reducing ends of sugars with a fluorophore, followed by electrophoresis under optimized conditions in polyacrylamide gels. PACE is a sensitive and simple tool for studying polysaccharide structure or quantity and also has applications in the investigation of enzyme specificity.
View Article and Find Full Text PDFCell walls are metabolically active components of plant cells. They contain diverse enzymes, including transglycanases (endotransglycosylases), enzymes that 'cut and paste' certain structural polysaccharide molecules and thus potentially remodel the wall during growth and development. Known transglycanase activities modify several cell-wall polysaccharides (xyloglucan, mannans, mixed-linkage β-glucan and xylans); however, no transglycanases were known to act on cellulose, the principal polysaccharide of biomass.
View Article and Find Full Text PDFCotton fibre is mainly composed of cellulose, although non-cellulosic polysaccharides play key roles during fibre development and are still present in the harvested fibre. This study aimed at determining the fate of non-cellulosic polysaccharides during cotton textile processing. We analyzed non-cellulosic cotton fibre polysaccharides during different steps of cotton textile processing using GC-MS, HPLC and comprehensive microarray polymer profiling to obtain monosaccharide and polysaccharide amounts and linkage compositions.
View Article and Find Full Text PDFCotton fiber cellulose is highly crystalline and oriented; when native cellulose (cellulose I) is treated with certain alkali concentrations, intermolecular hydrogen bonds are broken and Na-cellulose I is formed. At higher alkali concentrations Na-cellulose II forms, wherein intermolecular and intramolecular hydrogen bonds are broken, ultimately resulting in cellulose II polymers. Crystallinity changes in cotton fibers were observed and assigned using attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy and X-ray diffraction (XRD) subsequent to sodium hydroxide treatment and compared with an in situ protein-binding methodology using cellulose-directed carbohydrate-binding modules (CBMs).
View Article and Find Full Text PDFPolysaccharide analysis using carbohydrate gel electrophoresis (PACE) relies on derivatization of the reducing ends of sugars with a fluorophore, followed by electrophoresis under optimized conditions in polyacrylamide gels. PACE is a sensitive and simple tool for studying polysaccharide structure or quantity and also has applications in the investigation of enzyme specificity.
View Article and Find Full Text PDFMannans are hemicellulosic polysaccharides that have previously been implicated as structural constituents of cell walls and as storage reserves but which may serve other functions during plant growth and development. Several members of the Arabidopsis cellulose synthase-like A (CSLA) family have previously been shown to synthesise mannan polysaccharides in vitro when heterologously expressed. It has also been found that CSLA7 is essential for embryogenesis, suggesting a role for the CSLA7 product in development.
View Article and Find Full Text PDFThe complex enzyme pool secreted by the phytopathogenic fungus Fusarium graminearum in response to glucose or hop cell wall material as sole carbon sources was analyzed. The biochemical characterization of the enzymes present in the supernatant of fungal cultures in the glucose medium revealed only 5 different glycosyl hydrolase activities; by contrast, when analyzing cultures in the cell wall medium, 17 different activities were detected. This dramatic increase reflects the adaptation of the fungus by the synthesis of enzymes targeting all layers of the cell wall.
View Article and Find Full Text PDFPrevious studies using co-expression analysis have identified a large number of genes likely to be involved in secondary cell-wall formation. However, the function of very few of these genes is known. We have studied the cell-wall phenotype of irx7, irx8 and irx9, three previously described irregular xylem (irx) mutants, and irx14 and parvus-3, which we now show also to be secondary cell-wall mutants.
View Article and Find Full Text PDFThe ECTOPICALLY PARTING CELLS 1 (EPC1) gene encodes a putative retaining glycosyltransferase of the GT64 family, and epc1-1 mutant plants have a severely dwarfed phenotype. A new mutant allele of this gene, epc1-2, has been isolated. Reduced cell adhesion that has previously been reported for the epc1-1 mutant was not observed for either the epc1-1 or epc1-2 mutants grown in our conditions, suggesting that EPC1 does not affect cell adhesion but is involved in some other process affecting plant growth and development.
View Article and Find Full Text PDFNormal phase-high performance liquid chromatography (NP-HPLC) coupled to matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight (MALDI-TOF/TOF) tandem mass spectrometry is evaluated for the detailed structural characterization of various isomers of arabinoxylan (AX) oligosaccharides produced from endo-beta-(1-->4)-xylanase (endoxylanase) digestion of wheat AX. The fragmentation characteristics of these oligosaccharides upon MALDI-TOF/TOF high-energy collision induced dissociation (CID) were investigated using purified AX oligosaccharide standards labeled at the reducing end with 2-aminobenzoic acid (2-AA). A variety of cross-ring cleavages and 'elimination' ions in the fragment ion spectra provided extensive structural information, including Araf substitution patterns along the xylan backbone and comprehensive linkage assignment.
View Article and Find Full Text PDFA unique multifunctional glycosyl hydrolase was discovered by screening an environmental DNA library prepared from a microbial consortium collected from cow rumen. The protein consists of two adjacent catalytic domains. Sequence analysis predicted that one domain conforms to glycosyl hydrolase family 5 and the other to family 26.
View Article and Find Full Text PDFXylogenic cultures of zinnia (Zinnia elegans) provide a unique opportunity to study signaling pathways of tracheary element (TE) differentiation. In vitro TEs differentiate into either protoxylem (PX)-like TEs characterized by annular/helical secondary wall thickening or metaxylem (MX)-like TEs with reticulate/scalariform/pitted thickening. The factors that determine these different cell fates are largely unknown.
View Article and Find Full Text PDFPlant cell wall polysaccharides vary in quantity and structure between different organs and during development. However, quantitative analysis of individual polysaccharides remains challenging, and relatively little is known about any such variation in polysaccharides in organs of the model plant Arabidopsis thaliana. We have analysed plant cell wall pectic polysaccharides using polysaccharide analysis by carbohydrate gel electrophoresis.
View Article and Find Full Text PDFThe exoproteome of the fungus Fusarium graminearum grown on glucose and on hop (Humulus lupulus, L.) cell wall has been investigated. The culture medium was found to contain a higher quantity of proteins and the proteins are more diverse when the fungus is grown on cell wall.
View Article and Find Full Text PDFPectins differing in their degree and pattern of methylesterification are important in diverse aspects of plant physiology and also in many industrial applications. Determination of methylesterification fine structure and knowledge of enzyme specificities in modification and fragmentation of pectin are key to understanding the relationship between structure and function. The development of methodologies for the detection, separation and sequencing of different partially methylesterified oligogalacturonides (Me-OGAs) is consequently very important.
View Article and Find Full Text PDFThe analysis of partially methylesterified oligogalacturonides plays a key role both in the elucidation of the fine structure of the polysaccharide pectin and in the study of pectin-acting enzymes. Experimental methods performing the separation, detection and quantification of oligogalacturonides are, therefore, of crucial importance in the drive to understand structure-function relationships in pectin containing systems, both in vitro and in vivo. In this work standard samples of unesterified and partially methylesterifed galacturonides, and enzymatic digests of several pectin samples possessing distinct intramolecular patterns of methylesterification were studied using capillary electrophoresis (CE) and polysaccharide analysis using carbohydrate gel electrophoresis (PACE).
View Article and Find Full Text PDFThe results of a comparative study of two thermostable (1-->4)-beta-xylan endoxylanases using a multi-technical approach indicate that a GH11 xylanase is more useful than a GH10 xylanase for the upgrading of wheat bran into soluble oligosaccharides. Both enzymes liberated complex mixtures of xylooligosaccharides. 13C NMR analysis provided evidence that xylanases cause the co-solubilisation of beta-glucan, which is a result of cell-wall disassembly.
View Article and Find Full Text PDFRecombinant DNA technologies enable the direct isolation and expression of novel genes from biotopes containing complex consortia of uncultured microorganisms. In this study, genomic libraries were constructed from microbial DNA isolated from insect intestinal tracts from the orders Isoptera (termites) and Lepidoptera (moths). Using a targeted functional assay, these environmental DNA libraries were screened for genes that encode proteins with xylanase activity.
View Article and Find Full Text PDFDirected evolution technologies were used to selectively improve the stability of an enzyme without compromising its catalytic activity. In particular, this article describes the tandem use of two evolution strategies to evolve a xylanase, rendering it tolerant to temperatures in excess of 90 degrees C. A library of all possible 19 amino acid substitutions at each residue position was generated and screened for activity after a temperature challenge.
View Article and Find Full Text PDFThe electrophoretic migration in polyacrylamide gels of oligogalacturonic acids (OGAs) derivatized by a fluorophore (2-aminoacridone) was studied. We found conditions such that OGAs can be separated up to a degree of polymerization (DP) of 40. The migration was dependent on degree of methylation and DP, because the OGA mobility relies on the charge of the galacturonic acid residues.
View Article and Find Full Text PDFPolysaccharides containing beta-1,4-mannosyl residues (mannans) are abundant in the lignified secondary cell walls of gymnosperms, and are also found as major seed storage polysaccharides in some plants, such as legume species. Although they have been found in a variety of angiosperm tissues, little is known about their presence and tissue localisation in the model angiosperm, Arabidopsis thaliana (L.) Heynh.
View Article and Find Full Text PDFThe cellulose synthase-like proteins are a large family of proteins in plants thought to be processive polysaccharide beta-glycosyltransferases. We have characterized an Arabidopsis mutant with a transposon insertion in the gene encoding AtCSLA7 of the CSLA subfamily. Analysis of the transmission efficiency of the insertion indicated that AtCSLA7 is important for pollen tube growth.
View Article and Find Full Text PDFbeta-1,4-Mannanases (mannanases), which hydrolyse mannans and glucomannans, are located in glycoside hydrolase families (GHs) 5 and 26. To investigate whether there are fundamental differences in the molecular architecture and biochemical properties of GH5 and GH26 mannanases, four genes encoding these enzymes were isolated from Cellvibrio japonicus and the encoded glycoside hydrolases were characterized. The four genes, man5A, man5B, man5C and man26B, encode the mannanases Man5A, Man5B, Man5C and Man26B, respectively.
View Article and Find Full Text PDFA method to characterize plant cell wall polysaccharides is presented. The complexity of the polymer structures and the large number of different charged and uncharged monosaccharides that make up plant polysaccharides have previously made analysis technically demanding and laborious. Polysaccharide analysis using carbohydrate gel electrophoresis (PACE) relies on derivatization of reducing ends of sugars and oligosaccharides with a fluorophore, followed by electrophoresis under optimized conditions in polyacrylamide gels.
View Article and Find Full Text PDF