Publications by authors named "Florence Duclairoir"

Using Si as anode materials for Li-ion batteries remain challenging due to its morphological evolution and SEI modification upon cycling. The present work aims at developing a composite consisting of carbon-coated Si nanoparticles (Si@C NPs) intimately embedded in a three-dimensional (3D) graphene hydrogel (GHG) architecture to stabilize Si inside LiB electrodes. Instead of simply mixing both components, the novelty of the synthesis procedure lies in the in situ hydrothermal process, which was shown to successfully yield graphene oxide reduction, 3D graphene assembly production, and homogeneous distribution of Si@C NPs in the GHG matrix.

View Article and Find Full Text PDF

Graphene-based materials are extensively studied as promising candidates for supercapacitors (SCs) owing to the high surface area, electrical conductivity, and mechanical flexibility of graphene. Reduced graphene oxide (RGO), a close graphene-like material studied for SCs, offers limited specific capacitances (100 F·g) as the reduced graphene sheets partially restack through π-π interactions. This paper presents pillared graphene materials designed to minimize such graphitic restacking by cross-linking the graphene sheets with a bifunctional pillar molecule.

View Article and Find Full Text PDF

Two fabrication schemes of magnetic metal-polymer nanocomposites films are described. The nanocomposites are made of graphene-coated cobalt nanoparticles embedded in a polystyrene matrix. Scheme 1 uses non-covalent chemistry while scheme 2 involves covalent bonding with radicals.

View Article and Find Full Text PDF

The interfacing of polyoxometalates and graphene can be considered to be an innovative way to generate hybrid structures that take advantage of the properties of both components. Polyoxometalates are redox-sensitive and photosensitive compounds with high temperature stability (up to 400 °C for some), showing tunable properties depending on the metal incorporated inside the complex. Graphene has a unique electronic band structure combined with good material properties for electrical and optical applications.

View Article and Find Full Text PDF

Silicon nanoparticles (NPs) serve a wide range of optical, electronic, and biological applications. Chemical grafting of various molecules to Si NPs can help to passivate their reactive surfaces, "fine-tune" their properties, or even give them further interesting features. In this work, (1) H, (13) C, and (29) Si solid-state NMR spectroscopy has been combined with density functional theory calculations to study the surface chemistry of hydride-terminated and alkyl-functionalized Si NPs.

View Article and Find Full Text PDF

Au(iii) porphyrin was synthesized and evaluated for electrocatalytic oxidation of glucose. These Au(III) porphyrins, immobilized on a multiwalled carbon nanotube matrix, oxidized glucose at low overpotentials. Furthermore, AuNPs were electrogenerated by reduction of the Au(III) porphyrins.

View Article and Find Full Text PDF

Two [3]catenane 'molecular flasks' have been designed to create stabilized, redox-controlled tetrathiafulvalene (TTF) dimers, enabling their spectrophotometric and structural properties to be probed in detail. The mechanically interlocked framework of the [3]catenanes creates the ideal arrangement and ultrahigh local concentration for the encircled TTF units to form stable dimers associated with their discrete oxidation states. These dimerization events represent an affinity umpolung, wherein the inversion in electronic affinity replaces the traditional TTF-bipyridinium interaction, which is over-ridden by stabilizing mixed-valence (TTF)2•+ and radical-cation (TTF•+)2 states inside the 'molecular flasks.

View Article and Find Full Text PDF

Nickel(II) beta-azido-meso-tetraphenylporphyrin was successfully anchored on silicon using a bifunctional linker that bears two terminal alkyne functions by the sequence (i) hydrosilylation of a C[triple bond]C triple bond of the linker by surface Si-H groups and (ii) 1,3-Huisgen cycloaddition between the alkyne-terminated silicon surface and the azidoporphyrin derivative.

View Article and Find Full Text PDF

The missing link: Ferrocene and porphyrin monolayers are tethered on silicon surfaces with short (see picture, left) or long (right) linkers. Electron transfer to the silicon substrate is faster for monolayers with a short linker.Ferrocene and porphyrin derivatives are anchored on Si(100) surfaces through either a short two-carbon or a long 11-carbon linker.

View Article and Find Full Text PDF

We report the fabrication of flavin-functionalised self-assembled monolayers upon gold electrodes and their subsequent redox modulation via hydrogen bonding to 2,6-diethylamidopyridine.

View Article and Find Full Text PDF

Electrochemically controlled interactions have been shown to occur between TTF containing dendrimers 1 and 2 and the electron-rich oligomer 3.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionf5dnjsdh6bavo8kgrsdhtad7isp4tiqp): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once