We demonstrate that active site ensembles on transition metal phosphides tune the selectivity of the nitrate reduction reaction. Using NiP nanocrystals as a case study, we report a mechanism involving competitive co-adsorption of H* and NO* intermediates. A near 100% faradaic efficiency for nitrate reduction over hydrogen evolution is observed at -0.
View Article and Find Full Text PDFSolution-processed semiconductors are in demand for present and next-generation optoelectronic technologies ranging from displays to quantum light sources because of their scalability and ease of integration into devices with diverse form factors. One of the central requirements for semiconductors used in these applications is a narrow photoluminescence (PL) line width. Narrow emission line widths are needed to ensure both color and single-photon purity, raising the question of what design rules are needed to obtain narrow emission from semiconductors made in solution.
View Article and Find Full Text PDFSemiconductor quantum dots (QDs) are efficient organic photoredox catalysts due to their high extinction coefficients and easily tunable band edge potentials. Despite the majority of the surface being covered by ligands, our understanding of the effect of the ligand shell on organic photocatalysis is limited to steric effects. We hypothesize that we can increase the activity of QD photocatalysts by designing a ligand shell with targeted electronic properties, namely, redox-mediating ligands.
View Article and Find Full Text PDFMeasuring and modulating charge-transfer processes at quantum dot interfaces are crucial steps in developing quantum dots as photocatalysts. In this work, cyclic voltammetry under illumination is demonstrated to measure the rate of photoinduced charge transfer from CdS quantum dots by directly probing the changing oxidation states of a library of molecular charge acceptors, including both hole and electron acceptors. The voltammetry data demonstrate the presence of long-lived charge donor states generated by native photodoping of the quantum dots as well as a positive correlation between driving force and rate of charge transfer.
View Article and Find Full Text PDFThis tutorial review presents our perspective on designing organic molecules for the functionalization of inorganic nanomaterial surfaces, through the model of an "anchor-functionality" paradigm. This "anchor-functionality" paradigm is a streamlined design strategy developed from a comprehensive range of materials (, lead halide perovskites, II-VI semiconductors, III-V semiconductors, metal oxides, diamonds, carbon dots, silicon, ) and applications (, light-emitting diodes, photovoltaics, lasers, photonic cavities, photocatalysis, fluorescence imaging, photo dynamic therapy, drug delivery, ). The structure of this organic interface modifier comprises two key components: anchor groups binding to inorganic surfaces and functional groups that optimize their performance in specific applications.
View Article and Find Full Text PDFWith the increasing prevalence of type 2 diabetes and fatty liver disease, there is still an unmet need to better treat hyperglycemia and hyperlipidemia. Here, we identify isthmin-1 (Ism1) as an adipokine and one that has a dual role in increasing adipose glucose uptake while suppressing hepatic lipid synthesis. Ism1 ablation results in impaired glucose tolerance, reduced adipose glucose uptake, and reduced insulin sensitivity, demonstrating an endogenous function for Ism1 in glucose regulation.
View Article and Find Full Text PDFMitochondrial abundance and function are tightly controlled during metabolic adaptation but dysregulated in pathological states such as diabetes, neurodegeneration, cancer, and kidney disease. We show here that translation of PGC1α, a key governor of mitochondrial biogenesis and oxidative metabolism, is negatively regulated by an upstream open reading frame (uORF) in the 5' untranslated region of its gene (PPARGC1A). We find that uORF-mediated translational repression is a feature of PPARGC1A orthologs from human to fly.
View Article and Find Full Text PDF-acyl amino acids (NAAs) are a structurally diverse class of bioactive signaling lipids whose endogenous functions have largely remained uncharacterized. To clarify the physiologic roles of NAAs, we generated mice deficient in the circulating enzyme peptidase M20 domain-containing 1 (PM20D1). Global PM20D1-KO mice have dramatically reduced NAA hydrolase/synthase activities in tissues and blood with concomitant bidirectional dysregulation of endogenous NAAs.
View Article and Find Full Text PDFN-Acyl amino acids directly bind mitochondria and function as endogenous uncouplers of UCP1-independent respiration. We found that administration of N-acyl amino acids to mice improves glucose homeostasis and increases energy expenditure, indicating that this pathway might be useful for treating obesity and associated disorders. We report the full account of the synthesis and mitochondrial uncoupling bioactivity of lipidated N-acyl amino acids and their unnatural analogues.
View Article and Find Full Text PDF