Publications by authors named "Florence Beranger"

Neurodegenerative disorders such as Alzheimer's, Huntington's, and prion diseases are characterized by abnormal protein deposits in the brain of affected patients. In prion diseases, a key event in the pathogenesis is the conversion of the normal prion protein (PrP(c)) into abnormal protease resistant PrP(Sc) deposits, a phenomenon associated with a higher sensitivity to oxidative stress in vitro. In cellular models of Alzheimer and Huntington diseases, the disaccharide trehalose has been shown to be effective in inhibiting huntingtin and Abeta peptide aggregates and reducing their associated toxicity.

View Article and Find Full Text PDF

Prion diseases are characterised by neuronal loss, vacuolation (spongiosis), reactive astrocytosis, microgliosis and in most cases by the accumulation in the central nervous system of the abnormal prion protein, named PrP(Sc). In this review on the "cellular pathogenesis in prion diseases", we have chosen to highlight the main mechanisms underlying the impact of PrP(C)/PrP(Sc) on neurons: the neuronal dysfunction, the neuronal cell death and its relation with PrP(Sc) accumulation, as well as the role of PrP(Sc) in the microglial and astrocytic reaction.

View Article and Find Full Text PDF

The mechanisms of prion-induced neurological dysfunction observed in prion diseases are poorly understood. Transgenic mice expressing a truncated form of the prion protein (23-230 PrP) acquire cerebellar degeneration (Ma and Lindquist, Science, 2002). To decipher the mechanisms of neurodegeneration induced by 23-230 PrP, we established inducible cell lines expressing this truncated form of PrP.

View Article and Find Full Text PDF

Over the last 30 years, many drugs have been tested both in cell culture and in vivo for their ability to prevent the generation of prions and the development of transmissible spongiform encephalopathies. Among the compounds tested, dendrimers are defined by their branched and repeating molecular structure. The anti-prion activity of new cationic phosphorus-containing dendrimers (P-dendrimers) with tertiary amine end-groups was tested.

View Article and Find Full Text PDF

Prion diseases are fatal transmissible neurodegenerative disorders characterized by the accumulation of an abnormally folded isoform of the cellular prion protein (PrP(C)) denoted PrP(Sc). Recently, wild-type and pathogenic PrP mutants have been shown to be degraded by the endoplasmic reticulum-associated degradation proteasome pathway after translocation into the cytosol. We show here that a protease resistant form of PrP accumulated in the nuclei of prion-infected cells independently of proteasome activity, and that this nuclear translocation required an intact microtubule network.

View Article and Find Full Text PDF

It is commonly assumed that the physiological isoform of prion protein, PrP(C), is cleaved during its normal processing between residues 111/112, whereas the pathogenic isoform, PrP(Sc), is cleaved at an alternate site in the octapeptide repeat region around position 90. Here we demonstrated both in cultured cells and in vivo, that PrP(C) is subject to a complex set of post-translational processing with the molecule being cleaved upstream of position 111/112, in the octapeptide repeat region or at position 96. PrP has therefore two main cleavage sites that we decided to name alpha and beta.

View Article and Find Full Text PDF

Prion diseases are fatal and transmissible neurodegenerative disorders characterized by the accumulation of an abnormally folded isoform of the cellular prion protein (PrP(C)) denoted PrP(Sc). To identify intracellular organelles involved in PrP(Sc) formation, we studied the role of the Ras-related GTP-binding proteins Rab4 and Rab6a in intracellular trafficking of the prion protein and production of PrP(Sc). When a dominant-negative Rab4 mutant or a constitutively active GTP-bound Rab6a protein was overexpressed in prion-infected neuroblastoma N2a cells, there was a marked increase of PrP(Sc) formation.

View Article and Find Full Text PDF

Gem is a Ras-related protein whose expression is induced in several cell types upon activation by extracellular stimuli. With the aim of isolating the cellular partners of Gem that mediate its biological activity we performed a yeast two-hybrid screen and identified a novel protein of 970 amino acids, Gmip, that interacts with Gem through its N-terminal half, and presents a cysteine-rich domain followed by a Rho GTPase-activating protein (RhoGAP) domain in its C-terminal half. The RhoGAP domain of Gmip stimulates in vitro the GTPase activity of RhoA, but is inactive towards other Rho family proteins such as Rac1 and Cdc42; it is also specific for RhoA in vivo.

View Article and Find Full Text PDF

Cell cultures represent versatile and useful experimental models of transmissible spongiform encephalopathies. These models include chronically prion infected cell lines, as well as cultures expressing variable amounts of wild-type, mutated or chimeric prion proteins. These cultures have been widely used to investigate the biology of both the normal and the pathological isoform of the prion protein.

View Article and Find Full Text PDF