Publications by authors named "Florence Baychelier"

Hantaviruses, like other members of the Bunyaviridae family, are emerging viruses that are able to cause hemorrhagic fevers. Occasional transmission to humans is due to inhalation of contaminated aerosolized excreta from infected rodents. Hantaviruses are asymptomatic in their rodent or insectivore natural hosts with which they have co-evolved for millions of years.

View Article and Find Full Text PDF

The tissue non-specific alkaline phosphatase (TNAP) is a glycosyl-phosphatidylinositol (GPI) anchored glycoprotein which exists under different forms and is expressed in different tissues. As the other members of the ecto-phosphatase family, TNAP is targeted to membrane lipid rafts. Such micro domains enriched in particular lipids, are involved in cell sorting, are in close contact with the cellular cytoskeleton and play the role of signaling platform.

View Article and Find Full Text PDF

Background: Post-transplant non-Hodgkin lymphoma (NHL) is a well-recognized complication of solid-organ transplantation, and pharmacologic suppression of adaptive immunity plays a major role in its development. However, the role of natural killer (NK) cells in post-lung transplant de novo NHL is unknown.

Methods: Extensive phenotypic analyses of NK cells from patients diagnosed with NHL after liver or lung transplantation were conducted with multicolor flow cytometry.

View Article and Find Full Text PDF

Solid cancers are a major adverse outcome of liver transplantation. Recent reassessments have revealed insights into causal factors, primarily centering on modulations of the natural killer (NK) cell compartment in liver transplant recipients. In the presence of cytomegalovirus, the clonal expansion of differentiated NK cells could restrict the diversity of the NK repertoire favoring the development of certain tumors.

View Article and Find Full Text PDF

We have recently identified that the ligand of natural cytotoxicity triggering receptor 2 (NCR2, best known as NKp44) is expressed on a large panel of malignant cells. This ligand provides a new tool to investigate how stressed cells are recognized and eliminated by natural killer (NK) cells, and to develop novel immunotherapeutic paradigms against cancer.

View Article and Find Full Text PDF

Aspergillus fumigatus is an opportunistic human fungal pathogen that sheds galactosaminogalactan (GG) into the environment. Polymorphonuclear neutrophils (PMNs) and NK cells are both part of the first line of defense against pathogens. We recently reported that GG induces PMN apoptosis.

View Article and Find Full Text PDF

Solid cancers are a major adverse outcome of orthotopic liver transplantation (OLT). Although the use of chronic immunosuppression is known to play a role in T cell impairment, recent insights into the specificities of NK cells led us to reassess the potential modulation of this innate immune cell compartment after transplantation. Our extensive phenotypic and functional study reveals that the development of specific de novo noncutaneous tumors post-OLT is linked to unusual NK cell subsets with maturation defects and to uncommon cytokine production associated with the development of specific cancers.

View Article and Find Full Text PDF

Objective: HIV-infected immunological nonresponders (InRs) patients fail to show satisfactory CD4+ T-cell recovery despite virologically effective HAART. We propose that NKp44L, the cellular ligand of an activating natural killer (NK) receptor, expressed only on uninfected bystander CD4+ T cells from HIV-1 infected patients, could play a major role in this phenomenon by sensitizing these cells to NK killing.

Design: Phenotype and multifunctional status of CD4+ T cells, especially the subsets expressing and not expressing NKp44L, were characterized for HIV-infected patients receiving HAART for at least 2 years, during which their viral load remained less than 40 copies/ml; 53 were InRs (CD4 cell count always <350 cells/µl), and 82 immunological responders (CD4 cell count always ≥350 cells/µl).

View Article and Find Full Text PDF

Natural killer (NK) cells are an essential component of innate immunity that provides a rapid response to detect stressed, infected, or transformed target cells. This system is controlled by a balance of inhibitory and activating signals transmitted by a myriad of receptors and their specific ligands. Inhibitory receptors mainly recognize self-MHC class-I molecules, whereas activating receptors, such as natural cytotoxic receptors, NKG2D, and DNAM-1, interact with self-proteins, normally not expressed on the cell surface of healthy cells, but up-regulated by cellular stress or infections and are frequently expressed on tumor cells.

View Article and Find Full Text PDF

Normal chondrocytes display susceptibility to lysis by natural killer (NK) cells and this phenomenon may play a role in some inflammatory cartilage disorders. The mechanisms of chondrocyte recognition and killing by NK cells remain unclear. Using flow cytometry and immunohistochemical staining we found that normal human articular chondrocytes constitutively express a ligand for NKp44, one of stimulatory NK cell receptors involved in recognition and killing of target cells.

View Article and Find Full Text PDF

With an array of activating and inhibitory receptors, natural killer (NK) cells are involved in the eradication of infected, transformed, and tumor cells. NKp44 is a member of the natural cytotoxicity receptor family, which is exclusively expressed on activated NK cells. Here, we identify natural cytotoxicity receptor NKp44 (NKp44L), a novel isoform of the mixed-lineage leukemia-5 protein, as a cellular ligand for NKp44.

View Article and Find Full Text PDF

Background: The cellular prion protein, PrP(C), is GPI anchored and abundant in lipid rafts. The absolute requirement of PrP(C) in neurodegeneration associated to prion diseases is well established. However, the function of this ubiquitous protein is still puzzling.

View Article and Find Full Text PDF

Interferons (IFNs) are pleiotropic cytokines involved in the regulation of physiological and pathological processes. Upon interaction with their specific receptors, IFNs activate the Jak/STAT signalling pathway. Numerous studies suggest, however, that the classical Jak/STAT pathway cannot alone account for the wide range of IFN's biological effects.

View Article and Find Full Text PDF

Type I (alpha/beta) and type II (gamma) interferons (IFNs) bind to distinct receptors, although they activate the same signal transducer and activator of transcription, Stat1, raising the question of how signal specificity is maintained. Here, we have characterized the sorting of IFN receptors (IFN-Rs) at the plasma membrane and the role it plays in IFN-dependent signaling and biological activities. We show that both IFN-alpha and IFN-gamma receptors are internalized by a classical clathrin- and dynamin-dependent endocytic pathway.

View Article and Find Full Text PDF

Membrane-bound and soluble interleukin-15 (IL-15)/IL-15 receptor alpha (Ralpha) complexes trigger differential transcription factor activation and functions on human hematopoietic progenitors. Indeed, human spleen myofibroblasts (SMFs) are characterized by a novel mechanism of IL-15 trans-presentation (SMFmb [membrane-bound]-IL-15), based on the association of an endogenous IL-15/IL-15Ralpha complex with the IL-15Rbetagamma c chains. SMFmb-IL-15 (1) induces lineage-specific signaling pathways that differ from those controlled by soluble IL-15 in unprimed and committed normal progenitors; (2) triggers survival and proliferation of leukemic progenitors expressing low-affinity IL-15R (M07Sb cells); (3) causes only an antiapoptotic effect on leukemic cells expressing high-affinity receptors (TF1beta cells).

View Article and Find Full Text PDF

The antiviral and antiproliferative activities of human type I interferons (IFNs) are mediated by two transmembrane receptor subunits, IFNAR1 and IFNAR2. To elucidate the role of IFNAR1 in IFN binding and the establishment of biological activity, specific residues of IFNAR1 were mutated. Residues (62)FSSLKLNVY(70) of the S5-S6 loop of the N-terminal subdomain of IFNAR1 and tryptophan-129 of the second subdomain of IFNAR1 were shown to be crucial for IFN-alpha binding and signaling and establishment of biological activity.

View Article and Find Full Text PDF