The receptor for IgM has been identified a few years ago, but its expression by bovine mononuclear cells has not yet been studied. We used rabbit antibodies against bovine FcμR to begin to fill this gap. Anti-FcμR antibodies bound to B lymphocytes and monocytes, although less than to neutrophils.
View Article and Find Full Text PDFMastitis is a major issue for the dairy industry. Despite multiple attempts, the efficacy of available mastitis vaccines is limited and this has been attributed to their incapacity to trigger robust cell-mediated immunity. Yeasts have recently been identified as promising antigen vectors capable of inducing T-cell responses, surpassing the antibody-biased mechanisms elicited by conventional adjuvanted vaccines.
View Article and Find Full Text PDFBovine neutrophils possess a particular set of receptors for immunoglobulins. They have been shown to express a distinctive receptor for IgG, and it has long been known that they interact poorly with IgG but that they can use IgM antibodies as opsonins. We show that the binding of labeled IgM was inhibited by unlabeled IgM but not by IgA, suggesting that bovine neutrophils express a specific IgM receptor.
View Article and Find Full Text PDFBovine mastitis remains a major disease in cattle world-wide. In the mammary gland, mammary epithelial cells (MEC) are sentinels equipped with receptors allowing them to detect and respond to the invasion by bacterial pathogens, in particular Escherichia coli. Lipopolysaccharide (LPS) is the major E.
View Article and Find Full Text PDFBackground: Mammary gland (MG) infections (mastitis) are frequent diseases of dairy cows that affect milk quality, animal welfare and farming profitability. These infections are commonly associated with the bacteria Escherichia coli and Staphylococcus aureus. Different in vitro models have been used to investigate the early response of the MG to bacteria, but the role of the teat in mastitis pathogenesis has received less attention.
View Article and Find Full Text PDFBovine mastitis is mainly caused by bacterial infection and is responsible for important economic losses as well as alterations of the health and welfare of animals. The increase in somatic cell count (SCC) in milk during mastitis is mainly due to the influx of neutrophils, which have a crucial role in the elimination of pathogens. For a long time, these first-line defenders have been viewed as microbe killers, with a limited role in the orchestration of the immune response.
View Article and Find Full Text PDFT-lymphocytes are key mediators of adaptive cellular immunity and knowledge about distinct subsets of these cells in healthy and infected mammary gland secretions remains limited. In this study, we used a multiplex cytometry panel to show that staphylococcal mastitis causes the activation of CD4, CD8 and γδ T-cells found in bovine milk. We also highlight remarkable differences in the proportions of naïve and memory T-cells subsets found in blood and milk.
View Article and Find Full Text PDFThe epithelium of the mammary gland (MG) fulfills three major functions: nutrition of progeny, transfer of immunity from mother to newborn, and its own defense against infection. The defense function of the epithelium requires the cooperation of mammary epithelial cells (MECs) with intraepithelial leucocytes, macrophages, DCs, and resident lymphocytes. The MG is characterized by the secretion of a large amount of a nutrient liquid in which certain bacteria can proliferate and reach a considerable bacterial load, which has conditioned how the udder reacts against bacterial invasions.
View Article and Find Full Text PDFDendritic cells are sentinels of the immune system responsible for the initiation of adaptive immune mechanisms. In that respect, the study of these cells is essential for a full understanding of host response to infectious agents and vaccines. In ruminants, the large blood volume facilitates the isolation of abundant monocytes and their derivation to other antigen-presenting cells such as dendritic cells and macrophages.
View Article and Find Full Text PDFMastitis is a major problem in dairy farming. Vaccine prevention of mammary bacterial infections is of particular interest in helping to deal with this issue, all the more so as antibacterial drug inputs in dairy farms must be reduced. Unfortunately, the effectiveness of current vaccines is not satisfactory.
View Article and Find Full Text PDFInfections of the mammary gland remain a frequent disease of dairy ruminants that negatively affect animal welfare, milk quality, farmer serenity, and farming profitability and cause an increase in use of antimicrobials. There is a need for efficacious vaccines to alleviate the burden of mastitis in dairy farming, but this need has not been satisfactorily fulfilled despite decades of research. A careful appraisal of past and current research on mastitis vaccines reveals the peculiarities but also the commonalities among mammary gland infections associated with the major mastitis pathogens Escherichia coli, Staphylococcus aureus, Streptococcus uberis, Streptococcus agalactiae, or Streptococcus dysgalactiae.
View Article and Find Full Text PDFType 3 immunity encompasses innate and adaptive immune responses mediated by cells that produce the signature cytokines IL-17A and IL-17F. This class of effector immunity is particularly adept at controlling infections by pyogenic extracellular bacteria at epithelial barriers. Since mastitis results from infections by bacteria such as streptococci, staphylococci and coliform bacteria that cause neutrophilic inflammation, type 3 immunity can be expected to be mobilized at the mammary gland.
View Article and Find Full Text PDFDefensins are natural antimicrobial peptides. The avian beta-defensin AvBD7 isolated from the chicken bone marrow possess broad antibacterial spectrum and strong resistance to proteolysis. However, its ability to fight systemic infections of major concern for public health, such as salmonellosis, is unknown.
View Article and Find Full Text PDFEscherichia coli is one of the major pathogens causing mastitis in dairy cattle. Yet, the factors which mediate the ability for E. coli to develop in the bovine mammary gland remain poorly elucidated.
View Article and Find Full Text PDFStaphylococcus aureus is the major cause of very severe mastitis of dairy goats. The initial objective of our study was to fine-tune an experimental model of infection of the goat mammary gland with two strains of S. aureus and two lines of goats (low and high somatic cell score lines).
View Article and Find Full Text PDFThe outer membrane protein (Omp) A is a major constituent of the outer membrane of Escherichia coli. This protein has been used in several vaccine development studies, but seldom with a view to vaccinating against mastitis. The objective of this study was to investigate the immunogenicity of E.
View Article and Find Full Text PDFDefensins are frontline peptides of mucosal immunity in the animal kingdom, including birds. Their resistance to proteolysis and their ensuing ability to maintain antimicrobial potential remains questionable and was therefore investigated. We have shown by bottom-up mass spectrometry analysis of protein extracts that both avian beta-defensins AvBD2 and AvBD7 were ubiquitously distributed along the chicken gut.
View Article and Find Full Text PDFThe mammary gland is able to detect and react to bacterial intrusion through innate immunity mechanisms, but mammary inflammation can also result from antigen-specific adaptive immunity. We postulated that innate and adaptive immune responses could synergize to trigger inflammation in the mammary gland. To test this hypothesis, we immunized cows with the model antigen ovalbumin and challenged the sensitized animals with either Escherichia coli lipopolysaccharide (LPS) as innate immunity agonist, ovalbumin as adaptive immunity agonist, or both agonists in three different udder quarters of lactating cows.
View Article and Find Full Text PDFThe cytokine IL-17A has been shown to play critical roles in host defense against bacterial and fungal infections at different epithelial sites, but its role in the defense of the mammary gland (MG) has seldom been investigated, although infections of the MG constitute the main pathology afflicting dairy cows. In this study, we showed that IL-17A contributes to the defense of the MG against Escherichia coli infection by using a mouse mastitis model. After inoculation of the MG with a mastitis-causing E.
View Article and Find Full Text PDFIntramammary infusion of the antigen used to sensitize cows by the systemic route induces a local inflammation associated with neutrophil recruitment. We hypothesize that this form of delayed type hypersensitivity, which may occur naturally during infections or could be induced intentionally by vaccination, can impact the outcome of mammary gland infections. We immunized cows with ovalbumin to identify immunological correlates of antigen-specific mammary inflammation.
View Article and Find Full Text PDFMastitis remains a major disease of cattle with a strong impact on the dairy industry. There is a growing interest in understanding how cell mediated immunity contributes to the defence of the mammary gland against invading mastitis causing bacteria. Cytokines belonging to the IL-17 family, and the cells that produce them, have been described as important modulators of the innate immunity, in particular that of epithelial cells.
View Article and Find Full Text PDFStaphylococcus aureus is one of the main etiological agents of mastitis in ruminants. In the present retrospective study, we evaluated the potential interest of a previously described automated multiple loci Variable Number of Tandem Repeats (VNTR) Assay (MLVA) comprising 16 loci as a first line tool to investigate the population structure of S. aureus from mastitis.
View Article and Find Full Text PDFAminopeptidases N are metalloproteases of the M1 family that have been reported in numerous apicomplexan parasites, including Plasmodium, Toxoplasma, Cryptosporidium, and Eimeria. While investigating the potency of aminopeptidases as therapeutic targets against coccidiosis, one of the most important avian diseases caused by the genus Eimeria, we identified and characterized Eimeria tenella aminopeptidase N1 (EtAPN1). Its inhibition by bestatin and amastatin, as well as its reactivation by divalent ions, is typical of zinc-dependent metalloproteases.
View Article and Find Full Text PDFMastitis caused by Escherichia coli and Staphylococcus aureus is a major pathology of dairy cows. To better understand the differential response of the mammary gland to these two pathogens, we stimulated bovine mammary epithelial cells (bMEC) with either E. coli crude lipopolysaccharide (LPS) or with S.
View Article and Find Full Text PDF