The volatile profiles of Brussels sprouts and leek, as affected by pretreatment combined with frozen storage were analyzed in the present work. The data revealed that, notwithstanding the effect upon pretreatment seemed to be major compared to the effect upon frozen storage, the latter was existent. Pretreatment yielded volatile compounds that could be associated with (bio)chemical reaction pathways in both vegetables.
View Article and Find Full Text PDFand vegetables are known for their unique, family specific, water-soluble phytochemicals, glucosinolates, and S-alk(en)yl-l-cysteine sulfoxides, respectively. However, they are also important delivery systems of several other health-related compounds, such as carotenoids (lipid-soluble phytochemicals), vitamin C (water-soluble micronutrient), and vitamin K1 (lipid-soluble micronutrient). When all-year-round availability or transport over long distances is targeted for these often seasonal, locally grown vegetables, processing becomes indispensable.
View Article and Find Full Text PDFVegetable processing often consists of multiple processing steps. Research mostly focused on the impact of individual processing steps on individual health-related compounds. However, there is a need for more holistic approaches to understand the overall impact of the processing chain on the health potential of vegetables.
View Article and Find Full Text PDFProcessing can affect (bio)chemical conversions in vegetables and can act on their volatile properties accordingly. In this study, the integrated effect of pretreatment and pasteurization on the volatile profile of leek and Brussels sprouts and the change of this profile upon refrigerated storage were investigated. Pretreatments were specifically selected to steer biochemical reactivities to different extents.
View Article and Find Full Text PDFPulsed electric fields (PEF) at low field strength is considered a non-thermal technique allowing membrane permeabilization in plant-based tissue, hence possibly impacting biochemical conversions and the concomitant volatile profile. Detailed studies on the impact of PEF at low field strength on biochemical conversions in plant-based matrices are scarce but urgently needed to provide the necessary scientific basis allowing to open a potential promising field of applications. As a first objective, the effect of PEF and other treatments that aim to steer biochemical conversions on the volatile profile of Brussels sprouts was compared in this study.
View Article and Find Full Text PDFCommon bean cotyledons are rich in minerals (Mg, Ca, Fe and Zn), but they also contain natural barriers that can potentially prevent mineral absorption during digestion. In this study, both the cell wall integrity and mineral chelators/antinutrients (phytic acid and pectin) were investigated as natural barriers in common bean cotyledons. To examine the cell wall integrity as a physical barrier for mineral diffusion, soluble mineral content was determined in a cooked cotyledon sample before and after disruption of intact cell walls.
View Article and Find Full Text PDF